
Towards Formal Foundations of Event Queries and Rules

François Bry
Institute for Informatics
University of Munich

http://www.pms.ifi.lmu.de/

francois.bry@ifi.lmu.de

Michael Eckert
Institute for Informatics
University of Munich

http://www.pms.ifi.lmu.de/

michael.eckert@pms.ifi.lmu.de

ABSTRACT
The field of complex event processing still lacks formal foun-
dations. In particular, event queries require both declarative
and operational semantics. We put forward for discussion
a proposal towards formal foundations of event queries that
aims at making well-known results from database queries
applicable to event queries. Declarative semantics of event
queries and rules are given as a model theory with accom-
panying fixpoint theory. Operational semantics are then ob-
tained by translating the considered queries into relational
algebra expressions. We show the suitability of relational
algebra for the kind of incremental evaluation usually re-
quired for event queries. With the aim of generating further
discussion of formal foundations in the research community,
we reflect openly upon both strengths and weaknesses of the
presented approach.

1. INTRODUCTION
The emergence of event-driven architectures, automation

of business processes, drastic cost-reductions in sensor tech-
nology, and a growing need to monitor IT systems due to
legal, contractual, or operational considerations lead to an
increasing generation of events. The tasks involved in mak-
ing sense of all these events are commonly summarized under
the term “Complex Event Processing” (CEP).

In particular, CEP involves monitoring event streams and
clouds for complex (or composite) events, that is, events
or situations that cannot be inferred from looking at single
events but manifest themselves in certain combinations of
several events. Combinations that are of interest are usually
expressed in an (composite) event query language. While
a considerable number of such event query languages have
been proposed both from research and industry, there is still
a lack of formal foundations. This lack of formal foundations
has also been a discussion topic on a recent Dagstuhl seminar
on event processing [37]. Most notably, both declarative and
operational semantics for event queries are desirable.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1.1 Expressive Event Query Languages
As we argue in [8, 7, 9], expressive event query languages

should cover at least the four dimensions of data extrac-
tion, event composition, temporal and causal relationships,
and event accumulation for non-monotonic features such as
negation (absence of events) and aggregation. Accordingly,
formal semantics for event query languages must be able to
fully accommodate all four dimensions.

Further, a language should allow the use of (deductive)
rules to define new events from the answers to a compos-
ite event query [26, 9], similar to the way views are used
in database systems. Accordingly, the formalism used to
give semantics to an event query language should support
deductive rules. We now detail these requirements further.

Data extraction: Events contain data that is relevant
for applications to decide whether and how to react to them.
For events that are received as XML messages, the structure
of the data can be quite complex and might vary (semi-
structured). The data of events must be extracted and
provided (typically as bindings for variables) to test con-
ditions (e.g., arithmetic expressions) inside the query, com-
bine event data with persistent, non-event data (e.g., from
a database), construct new events (e.g., by deductive rules,
see below), or trigger reactions (e.g., database updates).

Event composition: To support composite events, i.e.,
events that consist of several events, event queries must sup-
port composition constructs such as the conjunction and dis-
junction of events (more precisely, of event queries). Com-
position must be sensitive to event data, which is often used
to correlate and filter events (e.g., consider only stock trans-
actions from the same customer for composition). Since re-
actions to events are usually sensitive to timing and order,
an important question for composite events is when they
are detected. In a well-designed language, it should be pos-
sible to recognize when reactions to a given event query are
triggered without difficulty.

Temporal (and causal) relationships: Time plays an
important role in event-driven applications. Event queries
must be able to express temporal conditions such as “events
A and B happen within 1 hour, and A happens before B.”
For some applications, it is also interesting to look at causal
relationships, e.g., to express queries such as “events A and
B happen, and A has caused B.” An in-depth discussion
of causality, especially defining and maintaining causal rela-
tionships, would go beyond the scope of this article, and we
concentrate on temporal relationships here.

Event accumulation: Event queries must be able to ac-
cumulate events to support non-monotonic features such as



negation of events (understood as their absence) or aggrega-
tion of data from multiple events over time. The reason for
this is that the event stream is (in contrast to extensional
data in a database) unbounded (or “infinite”); one there-
fore has to define a scope (e.g., a time interval) over which
events are accumulated when aggregating data or querying
the absence of events. Application examples where event
accumulation is required are manifold. A business activ-
ity monitoring application might watch out for situations
where “a customer’s order has not been fulfilled within 2
days” (negation). A stock market application might require
notification if “the average of the reported stock prices over
the last hour raises by 5%” (aggregation).

Rules: (Deductive) rules allow to define new, “virtual”
events from the existing one (i.e., those that are received
in the incoming event stream), much in the same fashion
as one uses view (or rules) in databases to define new, de-
rived data from existing base data. Only very few event
languages support such purely deductive rules, even though
support is highly desirable for a number of reasons: Rules
serve as an abstraction mechanism, making query programs
more readable. They allow to define higher-level application
events from lower-level (e.g., database or network) events.
Different rules can provide different perspectives (e.g., of
end-user, system administrator, corporate management) on
the same (event-driven) system. Rules allow to mediate be-
tween different schemas for event data. Additionally, rules
can be beneficial when reasoning about causal relationships
of events [26].

In addition to deductive rules, event-based systems usu-
ally also require reactive rules, typically Event-Condition-
Action (ECA) rules, to specify reactions to the occurrences
of certain events. While deductive rules can be, and often
are, implemented using reactive rules, we argue that de-
ductive (event) rules are inherently different from reactive
rules because they aim at expressing “virtual events,” not
additional actions. Accordingly and importantly, deductive
rules are free of side-effects. Implementing deductive rules
using reactive rules blurs this distinction and often strongly
restrict optimization: techniques that are applicable for de-
ductive rules, such as backward chaining or program rewrit-
ing, are not generally applicable to reactive rules. We refer
to [7, 9, 6] for further discussion of reactive rules and their
differences to deductive (event) rules.

1.2 Contributions
We put forward for discussion a proposal towards formal

foundations of event queries that aims at making well-known
results from database queries applicable to event queries.

It is beneficial to put event querying on the wheels of
query answering for several reasons. Query answering is
well-developed regarding both theoretical foundations and
practical systems. As this article tries to emphasize, many
(foundational and practical) results apply, or apply with
some changes, to composite events, too. This includes for-
mal semantics, chaining of rules, program and query trans-
formations, join algorithms, and index structures. It is de-
sirable to recognize where new concepts and methods are
needed – and where they are not needed. Finally, query an-
swering is undergoing a renaissance with Web and Semantic
Web research and applications raising novel issues such as
incomplete queries (e.g., against HTML and XML data) and
queries that require ontology reasoning (e.g., against RDF

data with RDFS and OWL ontologies) [12]. These issues
can be expected to become very relevant for event queries,
too, in the near future.

We show that declarative semantics of event queries and
rules can be given as a (Tarski-style) model theory with ac-
companying fixpoint theory (Section 2). This approach ac-
counts well for (1) data in events and (2) deductive rules
defining new events from existing ones, two aspects of-
ten neglected in previous work of semantics of event query
languages. To make the discussion concrete, we use a
datalog-like rule language for querying events. This lan-
guage is an abstraction of the high-level event query lan-
guage XChangeEQ [7, 9] but preserves the essential issues.
The main difference is that XChangeEQ supports querying
events that are received as XML messages (e.g., SOAP [21]
or CBE [15]), while the simplified rule language considered
here deals only with events that are represented as simple
relational facts. Although queries against XML and other
Web data are highly relevant to complex event processing,
we abstract this aspect out in this article for the sake of
simplicity.

We then provide operational semantics (Section 3) by
translating event queries into relational algebra (Section 3.1)
and showing that these can be evaluated in the incremental,
data-driven (or event-driven) manner that is generally re-
quired (Section 3.2). Relational algebra as a foundation for
operational semantics has a number of advantages: (1) It
is well-understood, in particular with regard to equivalences
of expressions that give rise to query rewriting to obtain
more efficient query plans and multi-query optimization by
sharing of subexpressions. (2) Efficient evaluation has been
studied for a long time and we can build upon many results
from databases, including works on main memory and dis-
tributed databases. (3) It can incorporate non-event data
(e.g., from a database) easily.

We also discuss optimization techniques in the form of
query rewriting as well as using specialized join operators
that make use of temporal conditions as they are common
in event queries (Section 4).

Finally, we reflect openly upon both strength and weak-
nesses of the presented approach (Section 5) and also com-
pare it to existing proposals. We do this with the aim of
generating further discussion of formal foundations for event
queries in the research community and making preliminary
steps towards a research agenda on formal foundations of
event queries.

We would like to emphasize that the datalog-like rule lan-
guage used in this article has the primary purpose is to make
the discussion concrete. It has been chosen because its syn-
tax is close to traditional rule languages (and we emphasize
the need for rules here) as well as because of its closeness
to XChangeEQ. The approaches presented throughout the
article are however quite general and not language specific.
In particular, an efficient, algebra-based query evaluation is
not tied to queries being expressed in any given language.

2. DECLARATIVE SEMANTICS
We now introduce a rule language for composite event

queries together with its declarative semantics.

2.1 Basic Concepts
As time model, we assume a linearly ordered set of time

points (T, <). Extensions to other time models, in particular



where there is only a partial order, are not difficult. We
show time points as integers in this article for simplicity; of
course the approach can deal with more realistic time models
of human calendars as well.

An event et is a simple relational fact e together with
an occurrence time t. Following [17, 2], events occur over
time intervals rather than just at time points. It turns out
that time intervals are also very appropriate for (composite)
events that have been derived by rules. The time intervals
over which events happen are closed and convex, i.e., have
the form t = [b, e] = {p | b ≤ p ≤ e} (where b ∈ T and
e ∈ T). The set of all events is denoted Events.

For convenience we define: begin([b, e]) = b, end([b, e]) =
e, [b1, e1]⊔[b2, e2] = [min{b1, b2}, max{e1, e2}], and [b1, e1] ⊑
[b2, e2] iff b2 ≤ b1 and e1 ≤ e2.

Throughout this paper, we will use a simple e-shopping
application that provides event such as orders, shipping, or
delivery of items for illustration. For example the event

order(47, ”muffins”, 11)[3,3] indicates that an order with num-
ber 47 for 11 muffins with has been made at time 3. Note
that we allow time intervals that degenerate to time points,
when there is no duration associated with an event as in the
case of an order.

A further example of an interesting event would be

comp(42, ”muffins”)[3,7], which indicates that the order with
number 42 for muffins has been completed over time inter-
val [3, 7]. Often an event such as “order completed” is not
provided by the involved systems (here: the e-shopping ap-
plication) as an atomic event in the incoming event stream
or cloud. Rather it has to be derived from existing events
such as (1) a customer placing an “order” with number n for
a given quantity q of a product p followed by (2) this order
(again with order number n) being “shipped” as a package
with tracking number t followed by (3) the “delivery” of the
package (again with tracking number t).

2.2 Querying Event with Rules
Deductive rules are an appropriate way of capturing

such knowledge about inferred events. They resemble the
notion of views in database systems or rules in expert and
other knowledge-based systems. This leads to a first exam-
ple of our rule language, which formalizes the above knowl-
edge about “order completed” events:

(1)

comp(id, p) ← o : order(n, p, q),
s : shipped(n, t),
d : delivered(t)
o before s, s before d,

The head (left side) of the rule defines new events “comp.”
The occurrence time for each new “comp” event is the time
interval covering all events that contributed to an answer of
the composite event query in the body (right side).

The query illustrates the first three querying dimensions
of Section 1.1. The atomic event queries order(n, p, q),
shipped(n, t), and delivered(t) extract data from events in
the form of bindings for the variables n, p, q, and t. (dimen-
sion “data extraction”).

The query combines events of types “order,” “shipped,”
and “delivered,” respectively, in a conjunction,1 meaning

1As usual in rule languages, we write conjunctions as a
comma “,”, though we will use the more logic-oriented no-
tation of “∧” in the model theory.

that all three events must happen (dimension “event com-
bination”). The combination is sensitive to data: we only
consider those events that are related by order number n
and tracking number t.

Finally, the query also has two temporal conditions: the
“order” event must happen before the “shipped,” and the
“shipped” before the “delivered” event. Note that the atomic
event queries have been prefixed with event identifiers o, s, d
that are then used to refer to their events in temporal condi-
tions. The relation before is one of Allen’s temporal interval
relations [4]. In addition to such qualitative conditions, one
can also use metric conditions, e.g., {o, s, d} within 48h to
specify that all events must happen with 48 hours.

Non-monotonic features such as negation, i.e, detect-
ing the absence of events, and aggregation of data from mul-
tiple events over time are important requirements for event
query languages.

The crux of such non-monotonic features is that they can-
not be simply applied to unbounded event streams, i.e.,
event streams that extend indefinitely into the future. We
therefore need a way to restrict the event stream to a finite
temporal extent (i.e., to a finite time interval) and apply
negation and aggregation only to the events accumulated in
this window (querying dimension “event accumulation”).

It should be possible to determine the accumulation win-
dow dynamically depending on other events. Typical cases
of such accumulation windows are: “from event a until event
b,” “one minute until event b,” “from event a for one minute,”
and (since events can occur over time intervals, not just time
points) “while event c.” Here we only look at the last case
because it subsumes the first three (they can be defined as
composite events, once more emphasizing the advantage of
using time intervals rather than points for events).

Proceeding further with examples, let’s say that an or-
der is overdue if it has not been shipped within 6 hours in
the case that less than 10 items were ordered and within 12
hours in the case of 10 or more items. Detecting “overdue”
events involves a negation, i.e., the absence of “shipped”
events in a given accumulation window. The accumula-
tion window is defined in relation to the “overdue” event
(6 and 12 hours on from the “overdue” event) and accord-
ingly called a relative temporal event. The rules for the
two cases are:

(2)
overdue(id) ← o : order(id, p, q), w : extend(o, 6h),

while w : not shipped(id, t), q < 10

(3)
overdue(id) ← o : order(id, p, q), w : extend(o, 12h),

while w : not shipped(id, t), q ≥ 10

The relative temporal event is specified as extend(o, 6h) and
begins with the start of an “order” event (o being its event
identifier) and ends 6 hours after the end of “order.” Such
relative timer events are particularly useful when time-outs
are involved (as in the example above) or when counts, aver-
ages and other aggregations should be computed over sliding
time windows (as we will see further down).

The event identifier w of the temporal event is then used
to specify the accumulation window (keyword while) for the
negation (keyword not) of shipped events. Note that the
event negation is (and must be!) sensitive to variable bind-
ings. Only the absence of a “shipped” event with the same
id as the “order” is relevant.

Finally the two rules also show that we can apply condi-
tions on the event data such as q < 10 and q ≥ 10 just like



one can in any database query language.
As an example of an aggregation, consider reporting the

number of all “shipped” events that have taken place in the
last 24 hours whenever an “overdue” event is detected. A
report of a high number could indicate that the shipping
department is overloaded, a lower number that the problem
is elsewhere.

(4)
rep(count(sid)) ← o : overdue(oid),

w : extend backward(o, 24h),
while w : collect shipped(sid, t)

This rule uses event accumulation (while) to collect all
“shipped” events over a given time window. (Note that dif-
ferent variables oid and sid are used!) The time window is
specified as a window going 24 hours into the past from the
current “overdue” event (extend backward(o, 24h)). The
count aggregate function in the rule head is used to yield
and report the desired number.

Note that this rule queries events that have been gener-
ated by other rules, illustrating the benefit of rules as an
abstraction mechanism put forward in Section 1.1.

2.3 Model Theory
Having described various requirements on expressive event

query languages using the simple rule language informally,
we now turn to giving declarative semantics for that rule
language. An established approach for rule languages is to
provide a model theory with an accompanying fixpoint the-
ory. In case the reader is not familiar with this approach, as
might be likely since it is not (yet) common for event query
languages, we try to recall the necessary concepts as we go
along. More in-depth introductions can be found in the liter-
ature on logic programming and (deductive) databases (e.g.,
[12, 25, 1, 18]). We start with the model theory and then
will see why we additionally need a fixpoint theory.

The basic problem of giving semantics can be described as
follows: given a set of rules (also called program) together
with a set of incoming events (those events that happen in
the outside world and are not derived by rules; also called
the stream of incoming events), we want to know all events
that are derived by the rules. (This approach also covers the
issue of finding the answers for a given event query w.r.t. a
program and an incoming event stream.)

The idea is to relate sentences (rules, queries) from the
language to an interpretation by defining an entailment re-
lation. An interpretation is basically a set of events (we will
refine this in an instant). The entailment relation is defined
recursively over the structure of the sentences. Of interest
for the semantics are those interpretations that (1) satisfy
all rules of a program w.r.t. the entailment relation and (2)
contain the stream of incoming events. These interpreta-
tions are then called models.

Since rules contain variables which have to be bound, we
also need the notion of a substitution and its application.
A substitution σ is a mapping from variable names to values.
The application of a substitution σ to an atomic event query
q yields a ground (relational) fact that is denoted σ(q). For
example applying σ with σ(t) = 42 to q = delivery(t) yields
σ(q) = delivery(42). When the constructor in the rule head
contains an aggregation function (e.g., count) we have to
apply a set of substitutions Σ rather than a single substi-
tution. For example applying Σ = {σ1, σ2}, where σ1(sid) =
42, σ1(sid) = 43, to the rule head c = rep(count(sid)) from

example (4) yields Σ(c) = rep(2).
An interpretation is 3-tuple M = (I, σ, τ ), where (1)

I ⊆ Events is the set of events et that “happen,” i.e., are
either in the stream of incoming events or derived by some
deductive rule. (2) σ is a grounding substitution containing
substitutions for the “normal” variables (i.e., data variables,
but not event identifiers). (3) τ is a substitution for the event
identifiers, i.e., a mapping from event variables to Events.
Since τ signifies the events that contributed to the answer
of some query, we also call it an “event trace.”

The entailment (or satisfaction) M |= F t of an expres-
sion F (rule, query etc.) over an occurrence time t in an
interpretation M is defined recursively in Figure 1.

Given a program P (i.e., a set of rules) and a stream of
incoming events E, we call an interpretation M = (I, σ, τ ) a
model of P under E if (1) M satisfies all rules (c← Q) ∈ P
for all time intervals t and (2) contains the stream of incom-
ing events, i.e., E ⊆ I . Note that here the incoming event
stream simply corresponds to the notion of base facts or ex-
tensional data found of traditional model theories. When
we consider whole programs P , only the set I of events that
happen is relevant and σ and τ are unimportant. In those
cases we identify M with I .

In the following points our model theory differs slightly
from well-known model theories of logic programming and
deductive databases: (1) The model theory directly accom-
modates use of aggregate functions in the rule head (via the
last line in the definition). This is not specific for event query
rule languages, but needed in any kind of rule language sup-
porting aggregation (e.g., Xcerpt [34, 33]). (2) We use the
event trace τ in addition to normal substitutions σ. It en-
sures that for each separate combination of events a different
new event is generated and also gives rise to reasoning about
(vertical) causality [26], i.e., allows to recognize which events
constituted to the detection of which event. (3) Events are
satisfied (entailed) over a time interval t (written in the su-
perscript). Accommodating occurrence times of events is
an obvious requirement for event query languages. (4) As
we will see in Section 2.5 (second theorem), our model the-
ory makes sense on unbounded incoming streams of events.
In other words E may be infinite as long as for each time
interval considered its restriction to this interval is finite.

2.4 Fixpoint Theory
A model theory, such as the one presented above, has

the issue of allowing many models for a given program.
If we consider as an example a program P containing the
example rules (1) through (4) from this section and the
empty event stream E = ∅, then M = ∅ is a model (the
one that is intended), but so would be for example M =

{overdue(20)[2,78]}. To give precise semantics we need a
unique (and intended) model.

A common and convenient way to obtain such a unique
model is to define it as the solution of a fixpoint equation
(which is based on the model theory). A fixpoint theory also
describes an abstract, simple, forward-chaining evaluation
method, which can easily be extended to work incrementally
as is required for event queries [8].

An additional issue is introduced by non-monotonic fea-
tures such as negation and aggregation when they are com-
bined with recursion. Consider a program consisting of the
following two rules:



I, σ, τ |= (i : q)t iff σ(q)t ∈ I and τ(i) = σ(q)t

I, σ, τ |= (i : extends(j, d))t iff exists et
′

with τ(j) = et
′

, τ(i) = et, t = t′ + d

. . . (Definitions for other temporal events are similar and skipped.)
I, σ, τ |= (i before j)t iff end(τ(i)) < begin(τ(j))
I, σ, τ |= (i during j)t iff begin(τ(j)) < begin(τ(i)) and end(τ(i)) < end(τ(j))
. . . (Definitions for other temporal and non-temporal conditions are similar and skipped.)

M |= (q1 ∧ · · · ∧ qm ∧ C1 ∧ · · · ∧ Cn)t iff M |= q
t1

1
, . . . M |= qtm

m
, t = t1 ⊔ · · · ⊔ tm, and M |= Ct

1
, . . .M |= Ct

n

where q1, . . . qm are atomic event queries and C1, . . .Cn are conditions, m ≥ 1, n ≥ 0

I, σ, τ |= (while j : not q)t iff exists et
′

with τ(j) = et
′

, t′ = t, and for all t′′ ⊑ t we have I, σ, τ 6|= qt
′′

I, σ, τ |= (while j : collect q)t iff exists et
′

with τ(j) = et
′

, t′ = t, and exits t′′ with I, σ, τ |= qt
′′

I, σ, τ |= (c← Q)t iff (1) exists τ ′ s.t. Σ(c)t ⊆ I for Σ = {σ′ | I, σ′, τ ′ |= Qt}, or (2) for all σ′ and τ ′: I, σ′, τ ′ 6|= Qt.

Figure 1: Model Theory

p(x) ← w : s(x), while w : not q(x)
q(x) ← w : s(x), while w : not p(x)

It is not clear what the intended semantics of this program
are. For example under the event stream E = {s(1)[1,3]}

both M1 = {s(1)[1,3], p(1)[1,3]} and M2 = {s(1)[1,3], q(1)[1,3]}
are models and, since they are symmetric, none is prefer-
able. This is a common and inherent difficulty when rules
and negation are combined. (In fact it is an adaption of the
standard example p ← ¬q, q ← ¬p from logic programming
and deductive databases.) A simple and established solu-
tion is to avoid such situations by requiring programs to be
stratifiable.

Stratification restricts the use of recursion in rules by
ordering the rules of a program P into so-called strata (sets
Pi of rules with P = P1 ⊎ · · · ⊎ Pn) such that a rule in a
given stratum can only depend on (i.e., access results from)
rules in lower strata (or the same stratum, in some cases).2

One can then give a unique model for each stratum using
as “input” (as stream of incoming events) the model of the
next lower stratum.

The restriction to stratifiable programs could be partially
lifted at the cost of a more involved semantics (and evalua-
tion) and there has been much research on this issue. This
is however outside the scope of this paper.

Three types of stratification are required for our event
query rule language: (1) Negation stratification, i.e., events
that are negated in the query of a rule may only be con-
structed by rules in lower strata, events that occur posi-
tively may only be constructed by rules in lower strata or
the same stratum. (2) Grouping stratification, i.e., rules us-
ing aggregation constructs like count in the head (together
with a collect in the body) may only query for events con-
structed in lower strata. (3) Temporal stratification, i.e., if
a rule queries a relative temporal event like extends(i, 1h)
then the anchoring event (here: i) may only be constructed
in lower strata. While negation and grouping stratification
are fairly standard, temporal stratification is a requirement
specific to complex event query programs like those express-
ible in our rule language.

The fixpoint operator TP for a program P is defined
as:

TP (I) = I ∪ {et | there exist a rule c← Q ∈ P,

a maximal set Σ of substitutions,

and an event trace τ such that

e ∈ Σ(c) and ∀σ ∈ Σ.I, σ, τ |= Qt}
2Equivalently one can partition the relation names used in
rule heads instead of rules.

The repeated application of TP until a fixpoint is reached is
denoted T ω

P .
The fixpoint interpretation3 MP,E of a program P

with stratification P = P1⊎· · ·⊎Pn under and event stream
E is defined by computing fixpoints stratum by stratum:
M0 = E = T ω

∅ (E), M1 = T ω

P1

(M0) . . . , MP,E = Mn =

T ω

Pn

(Mn−1). Here, Pi =
S

j≤j
Pj denotes the set of all rules

in strata Pi and lower.

2.5 Theorems
We now give a theorem that shows that the declarative

semantics for programs in our rule language provided by the
fixpoint interpretation are well-defined and unambiguous.

Theorem For a stratifiable program P and an event
stream E, MP,E is a minimal model of P under E. Fur-
ther, MP,E is independent of the stratification of P .

Note that “minimal” in the theorem entails that all event
in the model are either in the stream of incoming events or
have been derived by rules, i.e., no events have been added
without justification.

More interestingly, we can show that the model theory
and fixpoint semantics are sensible on infinite event streams.
The next theorem justifies a streaming evaluation, where
answers to composite event queries are generated “online”
and we never have to wait for the stream to end. This is
especially important, since event streams can conceptually
be infinite and thus not end at all.

In particular it ensures an event et can be detected at
the time point end(t) since no knowledge about any events
in the future of end(t) is required. Ensuring that evalua-
tion methods are not expected to “crystal gaze” is of course
an important requirement and one example where we can
use the declarative semantics to prove interesting statements
about a (composite) event query language.

Theorem Let E | t denote the restriction of an event

stream E to a time interval t, i.e., E | t = {et′ ∈ E | t′ ⊑ t}.
Similarly, let M | t denote the restriction of an interpretation
M to t. Then the result of applying the fixpoint procedure
to E | t is the same as applying it to E for the time interval
t, i.e., MP,E|t | t = MP,E | t. In other words to evaluate a
program over a time interval t, we do not have to consider
any events happening outside of t.

Proofs for both theorems are presented in [9] in a more
general setting (queries against events in XML format in-
stead of relational). The proof for the first theorem is an
adaption of a standard proof in [25].

3As mentioned before, we consider whole programs P now
and thus can skip σ and τ in the interpretation I .



3. OPERATIONAL SEMANTICS
While declarative semantics tell us what the answers to

given event queries are, they tell us very little on how to
actually evaluate them. We concentrate in this paper on
evaluating queries in rule bodies, touching only briefly upon
issues related to chaining of rules.

3.1 Relational Algebra for Events
We now first translate rule bodies into relational algebra

expressions. These serve as a logical query plan and we can
exploit query rewriting as an optimization technique (see
Section 4). The actual incremental evaluation of (possibly
rewritten) query plans will be the topic of Section 3.2.

Whenever an event (e.g., order(42, ”muffins”, 2)[3,3]) oc-
curs that matches some atomic event query (e.g., o :
order(id, p,q)) this gives bindings for the free variables in
the query (e.g., id 7→ 42, p 7→ ”muffins”, q 7→ 2) together
with the event’s occurrence time. We will represent the oc-
currence time as variable bindings with the special names
i.s and i.e, where i is the event identifier given in the query
(e.g., o.s 7→ 3, o.e 7→ 3). This leads directly to representing
the results of atomic event queries as relations of named tu-
ples. Each atomic event query i : Q has an associated base
relation Ri with schema sch(Ri) = {i.s, i.e} ∪ freevars(Q).

By virtue of representing occurrence times as part of tu-
ples, translating composite event queries of rule bodies into
relational algebra expressions becomes quite straightforward.
(Extended) projection is used to discard variables that do
not occur in the rule head and to compute the occurrence
time of the result. Combination of (atomic) event queries
with conjunction is translated as a natural join. Conditions
on the data are expressed as selections. Maybe a bit sur-
prisingly, temporal conditions (such as o before s are also
expressed as selections; this works because we made tempo-
ral information (i.e., occurrence times of events) part of the
data of our base relations.

With this and Ro, Ss, Td respectively denoting the re-
lations for o : order(id, p, q), s : shipped(id, t), and d :
delivered(t), the query from example (1) from the previous
section can be expressed as:

πr.s←min{o.s,s.s,d.s},r.e←max{o.e,s.e,d.e},id,p(
σo.e<s.s∧s.e<d.s(Ro 1 Ss 1 Td))

The starting time r.s of the result is the minimum of all
involved starting times (o.s, s.s, d.s), the ending time r.e is
the maximum of all ending times (o.e, s.e, d.e).

Negation of events must be, as mentioned earlier, sensitive
to variable bindings. It can be expressed using a θ-anti-semi-
join, which is defined as R ⋉θ S = R \ πsch(R)(σθ(R 1 S)).

Relative timer events require the construction of their oc-
currence times and can thus be expressed by an extended
projection.

The expression for example (2) then is (analogous for (3)):

πr.s←min{o.s,w.s},r.e←max{o.e,w.e},id(σq<10(
πw.s←o.s,w.e←o.e+6h,sch(Ro)(Ro) ⋉w.s<s.s∧s.e<w.e Ss))

When event accumulation is used for aggregating data
from events, this requires a θ-join between the accumulated
events and the rest of the query, where the θ expresses the
temporal condition given by the accumulation window. For
the actual aggregation in the head, the grouping operator γ
is used. (We follow the common notation and meaning for
γ as given in [18]: it partitions the input tuples into groups

of tuples having equal values on the grouping attributes and
for each group outputs a single tuple with the grouping at-
tributes and the additional aggregated attributed.)

With To and Us denoting the relations for o : overdue(oid)
and s : shipped(sid, t), the expression for example (4) is:

γr.s,r.e,COUNT (sid)(πr.s←min{o.s,w.s},r.e←max{o.e,w.e},sid(
πw.s←o.s−24h,w.e←o.e,sch(To)(To) 1w.s<s.s∧s.e<w.e Us))

The framework laid out in this section is fairly general.
Most event queries expressible in other event query lan-
guages, e.g., [2, 3, 5, 11, 14, 19, 27, 29, 32], can be translated
into both the rule language and the relational algebra quite
easily. Note however that we have not discussed event con-
sumption or instance selection [36, 23] here, so far; we will
do this in Section 5.

3.2 Incremental Evaluation
The task of evaluating a composite event query Qr (given

as a relational algebra expression) is a step-wise procedure:
In each step, we are given a set E of events that happen
at the current time, which we will denote now (i.e., for all
et ∈ E : end(t) = now). The required output then are all
answers produces by Qr that happen at the current time
now, i.e., only Qnew = σr.e=now(Q). The computation of
Qnew usually requires knowledge of events that happened
before the current time.4 Accordingly, in each step we also
have to maintain some data structures that store knowledge
about these events for use in future evaluation step. Note
that in this description of the task, we assume that events
arrive in order of their occurrence times. We also say that
the event stream is (temporally) ordered. A discussion on
lifting this restriction can be found in [10].

A primitive way of evaluating a given event query Qr

would be based on maintaining as data structure simply
a set S of all events received seen so far. In each step,
add E to S, i.e., S := S ∪ E and evaluate the expression
σr.e=now(Q) against S. This approach is however undesir-
able for efficiency reasons: each step performs a considerable
amount of redundant computation, recomputing (intermedi-
ate) results that had been computed also in previous steps.
(These intermediate results are also called “partial answers”
or “semi-composed events” in other works.)

An incremental, data-driven approach that “remembers”
intermediate results across different evaluation steps (in the
style of the rete algorithm [16]), is preferable. The primary
concern in making evaluation incremental is on joins since
these are “blocking” operators, i.e., their current input may
have to be combined with future inputs. For selection and
projection this is not the case; they apply on a per-tuple
basis and can directly output their results. Note that the
grouping operator γ as we used it in the previous section
can be understood as non-blocking, since the blocking has
already been performed by a join in its input.

The basic idea for making a join R 1 S incremental is
to make it a stateful operator that stores the inputs that
might be needed in future evaluation steps and in each step
only outputs those results that are new (i.e., happen at the
time of the current evaluation step and thus have not been
computed in previous steps). For this, we use the basic fact
that R 1 S = (Rold 1 Sold) ∪ (Rnew 1 Sold) ∪ (Rold 1

Snew)∪ (Rnew 1 Snew), where Rnew and Snew contain only

4Note that the second theorem of Section 2.5 ensures that
no knowledge of future events is required.



the events happening at the current time, and Rold and Sold

any (relevant) events that happened before. When perform-
ing the join in an evaluation step, Rold 1 Sold need not be
computed because it has already been computed by the pre-
vious steps. Note that all parts of the union are disjoint due
to the different occurrence times on their tuples.

The straightforward way of describing the incremental
evaluation just outlined is to perceive each node in the ex-
pression tree as an object which has pointers to node objects
for its subexpressions (arguments), some auxiliary data, and
a method eval() which delivers the result of evaluating the
expression (only those events happening at the current time).
We additionally assume a global set E of all events happen-
ing at the current time as described above, which will be
used for evaluating atomic events. The nodes for atomic
event queries, selections, and joins are depicted in Figure 2
in pseudo code.

Nodes for relative timer events (extended projections) po-
tentially generate tuples with an occurrence time j.e that lie
in the future (i.e., j.e > now). These should not be passed
on to the parent node immediately, but only in a later eval-
uation step. They are therefore stored in a relation Rdelayed

until time has progressed further. Pseudo code for the rela-
tive timer node is also depicted in Figure 2.

Stateful operators are easy to understand and implement.
We would however like to also sketch a slightly different,
more abstract perspective on incremental evaluation as well,
which emphasizes the relationship with (incremental) main-
tenance of materialized views [22].

In the expression for example (1) from the Section 3.1,
we would maintain the materialized view Vo,s = Ro 1 Ss

together with materializations of Ro, Ss, Td.
5 The query

then is Qr = πX(σC(V 1 Td)) (subscripts abbreviated with
X and C). In each evaluation step we are given the changes
(i.e., the events that are added) to the base relations, which
we denote △Ro, △Ss, △Td. The change to the materialized
view Vo,s then is given (as explained earlier) by △Vo,s =
(△Ro 1 △Ss) ∪ (Ro 1 △Ss) ∪ (△Ro 1 Ss). In turn the
change to Qr is △Qr = πX(σC((△Vo,s 1 △Td) ∪ (Vo,s 1

△Td)∪(△Vo,s 1 Td)). This △Qr is exactly the Qnew , which
we require as output of the current step (see beginning of
this section).

Derivation of expression accounting for the changes such
as △Vo,s and △Qr has been studied extensively in the lit-
erature. Usually these works are more general, account-
ing not only for adding of tuples (△R) but also deletion
of tuples (▽R) and include a minimality condition for the
change expressions. View maintenance has also been stud-
ied using bag algebras, which allow duplicates, instead of
(set-oriented) relational algebra [20].

Advantages of this “view maintenance perspective” on
incremental evaluation are: (1) It accounts well for multi-
query optimization: the same materialized view can be used
for different queries. (2) Such optimizations can be derived
by rewriting rules on a set of view definitions (together with
other optimizations). (3) View maintenance also accounts
for deletion of tuples (in intermediate and final results). This
is beneficial when the assumption that the event stream is
temporally ordered is dropped and latency concerns make
an evaluation preferable that generates at first incorrect or
incomplete answers (when non-monotonic features such as

5Note that often we will not materialize a base relation R
itself, as here, but an actual view V ′ = πX′σC′(R) of it.

negation or aggregation are considered) and produces cor-
rections afterwards. (4) When storing all intermediate re-
sults is not possible or desirable, it is open to space-time
trade-offs [31], i.e., storing only certain intermediate results
and recomputing others. (5) Finally, being amenable to
equational reasoning it simplifies theoretical investigations,
in particular correctness proofs (see also [20]).

4. OPTIMIZATION
An important motivation behind basing composite event

query evaluation on relation algebra is to perform query op-
timization like in databases. We only scratch the surface
of event query optimization here, briefly discussing physical
optimization, logical optimization, and temporal optimiza-
tion. While the first two are well-explored in databases, the
third is rather novel and specific to event queries.

We would like to emphasize that the aim of this section
is not to develop a full event query optimizer, but rather
to demonstrate the potential of grounding event query op-
timization in relational algebra.

4.1 Physical Optimization
Physical Optimization encompasses choosing implementa-

tions for operators (e.g., join algorithms) as well as choosing
index structures for intermediate results.

As an example for an operator implementation, (double)
pipelined hash joins have proven particularly effective in sce-
narios that are similar to (main memory) event query eval-
uation [24].

Note that index structures for intermediate results (in-
cluding the base relations) can be chosen at the compile-
time of the query, i.e., an informed choice can me made
based on a priori knowledge of the query. In a database,
in contrast, index structures for base relations are deter-
mined earlier as part of database design. In this phase there
is no (full) knowledge of the queries and usually a human
database administrator has to choose index structures based
on predictions of the queries that will be made.

4.2 Logical Optimization
Logical Optimization attempts to transform a given query

plan (given in relational algebra) into an equivalent but
more efficient plan. Rewriting rules can be used to express
such transformations. They are based on well-known equiva-
lences of relational algebra expressions such as R 1 S = S 1

R, (R 1 S) 1 T = (R 1 S) 1 T , σC(R 1 S) = σC(R) 1 S
(provided C contains only attributes from sch(R)). Ar-
guably, choosing a good join order and pushing selections
are equally important in event query evaluation as they are
in traditional database query evaluation.

To the well-known equivalences, event querying poten-
tially adds equivalences based on (simple) temporal rea-
soning to add or remove implied temporal conditions, e.g.,
σi.e<j.s(R) = σi.e<j.s∧i.s<j.s(R) (since trivially i.s ≤ i.e).

To illustrate query rewriting, the original expression of
query (1) can be transformed to

(∗)
πr.s←min{o.s,s.s,d.s},r.e←max{o.e,s.e,d.e},id,p(

πo.s,o.e,n,p(Ro) 1o.e<s.s (Ss 1s.e<d.s Td) )

We will discuss in the next section that θ-joins where θ is
a temporal condition (e.g., θ = o.e < s.s) of a particular
form allow for an interesting optimization based on temporal
order of events.



AtomicNode extends QueryNode:
AtomicQuery A;
Relation eval():

return A(E);

SelectionNode extends QueryNode:
QueryNode Q;
Condition C;
Relation eval():

return σC(Q.eval());

JoinNode extends QueryNode:
QueryNode QL, QR;
Relation Lold, Rold;
Relation eval():

Lnew := QL.eval();
Rnew := QR.eval();
J := (Lnew 1 Rold)
∪(Lold 1 Rnew)
∪(Lnew 1 Rnew);

Lold := Lold ∪ Lnew ;
Rold := Rold ∪Rnew ;
return J ;

RelativeTimerNode extends QueryNode:
QueryNode Q;
Relation Rdelayed;
EventAttribute i,j;
Duration s′, e′;
Relation eval():

N := Q.eval();
Rnew := πj.s←i.s+s′,j.e←i.e+e′,sch(Q)(N);
J := σj.e≤now(Rdelayed ∪ Rnew)
Rdelayed := σj.e>now(Rdelayed ∪Rnew)
return J ;

Figure 2: Implementation of operator nodes for incremental evaluation

Query rewriting based on both heuristics and cost-
estimation is well-studied in databases. In the context of
event query evaluation, appropriate cost measures (e.g.,
throughput, latency) and cost-estimation techniques (e.g.,
to estimate throughput of operators or sizes of intermediate
results) might still have to be developed, though. A particu-
lar issue is that there are scenarios in event processing where
statistics for the event stream (i.e., the base relations) that
would be necessary for a cost-estimation are not available
at the time of the query compilation. (Keep in mind that
a database has all data –and thus also necessary statistics–
available at the time a given query is executed. In contrast
in an event processing system, data –and thus statistics–
might only arrive after the query has been posed.) One so-
lution for such situations is to generate several query plans
based solely on heuristics, start all plans in parallel, and
drop over time those plans that turn out to be inefficient.

4.3 Temporal Optimization
Recall from Section 3.2 that we assume event streams to

be temporally ordered. This assumption gives rise to opti-
mizations based on temporal conditions specified in queries.
(Slightly more complex variants of the optimizations are still
possible when the order assumption is lifted.)

When we look at how the rewritten relational algebra ex-
pression (∗) from example query (1) is evaluated, we can see
that the joins evaluate and store both inputs according to
the pseudo code from Figure 2. (The same applies to the
original expression from Section 3.1.) By considering the
temporal conditions in the query, which manifest as condi-
tions of the θ-joins, we could do better: It is unnecessary
to store the right input (Td) of the second join (1s.e<d.s)
— the temporal condition s.e < d.s will discard any tuples
generated by the joins (Snew 1 Told) and (Snew 1 Tnew).
With similar justification, it is not necessary to store the
right input (results of 1s.e<d.s) in the first join (1s.e<d.s).
Further, in both joins it is unnecessary to even evaluate the
right input as long as the left input is empty.

Temporal θ-joins that make the described optimizations
have been introduced in [10]. The first temporal θ-join
streams (i.e., does not store) one of its inputs (either left
or right). The second temporal θ-join suppresses (avoids)
evaluation of its right argument whenever the current state
of query evaluation permits. The optimizations can also
be combined into a left-streaming/right-suppressing and a
right-streaming/right-suppressing θ-join. The implementa-
tion of these θ-joins as well as the conditions (prerequisites
on θ) when they may be applied are given in detail in [10].

Another important optimization is concerned with using
metric temporal conditions such as {o, s, d} within 48h (cf.
Section 2.2) to purge tuples (events) that have “timed-out”
from stores. To illustrate this, consider a variant of query
(1) for orders that have been completed in a timely fashion,
so that order and shipping happen within 12 hours, while
shipping and delivery happen within 36 hours:

timely(id, p) ← o : order(n, p, q), s : shipped(n, t),
d : delivered(t), o before s, s before t,
{o, s}o within 12h, {s, d} within 36h,

A (rewritten) relation algebra expression for this query is:

πr.s←min{o.s,s.s,d.s},r.e←max{o.e,s.e,d.e},id,p(σd.e−s.s≤36

(Ro 1o.e<s.s,s.e−o.s≤12h Ss) 1s.e<d.s,d.e−o.s≤48h Td) )

Note that the condition d.e − o.s ≤ 48h in the second join
has been inferred from the original conditions in the query.
Rewriting rules, as argued for in Section 4.2, are well-suited
for making such inferences.

For the first join, we can use the condition s.e−o.s ≤ 12h
to purge any tuples that are older than 12 hours from the left
store (which contains “order” events coming from Ro). For
the second join, we can similarly use the condition d.e−o.s ≤
48h to purge any tuples that are older than 48 hours from
the left store. Keep in mind that, as argued earlier, the right
argument in both joins can be made streaming, i.e., is not
stored at all. Accordingly it is not necessary to purge tuples
on the right side (though the conditions would allow that).

Removing stored events is an important requirement in
event querying. If events are not removed at all, storage
for intermediate results typically grows at least linearly in
the number of events received so far [13]. For event queries
against unbounded streams this is not tolerable. Note how-
ever that in order to remove stored events, temporal con-
ditions (such as the one above) have to be given with the
queries. This can lead to notions such as a restricted class
of “legal event queries” as introduced in [11].

5. DISCUSSION
While we have used a concrete event query language to

give declarative and operational semantics, the general ap-
proach is not language specific. We now discuss strengths
and weaknesses of our approach.

A number of features found in other event query languages
are not fully covered by the approach presented. Of particu-
lar concern are event instance selection and event consump-
tion [36, 23]. (The general issue has been introduced first in



[14] with so-called “parameter contexts.”)
Consider a query for generating a congestion warning for

cars. Each car car sends an event position(car, loc) when-
ever it enters the region loc. A congestion in area loc is
reported with an event congestion(loc). Whenever a con-
gestion event happens, we would like to warn all cars that
are in area loc. A rule such as

warn(car) ← l : position(car, loc), j : congestion(loc),
l before j

would not capture the intended application semantics: a
given “congestion” event would be paired up with all “po-
sition” events that car car has sent so far. However, for the
intended application only the most recent “position” event
is relevant for each car.

Event instance selection addresses this issue by given lan-
guage constructs to select only specific instances of events,
e.g., the last (as required above), first, n-th event, or all
events. Note that defining what constitutes the first, last,
or n-th event can be complicated because there might not
be a total order on events (e.g., when the events occur over
time intervals and overlap). See also discussion in [35].

Further, depending on the involved event sources, the
same congestion might be reported several times. When
this happens, we do not want to generate further warnings.
Event consumption allows to invalidate certain events so
that, once they have been used in one answer to a query,
they cannot be used in later answers. In the example, gen-
erating a warning could consume the “location” event. As a
consequence, future “congestion” events (with the same lo-
cation) would not generate further warnings because there
is no corresponding “location” event anymore.

Event instance selection and consumption tend to be
rather difficult to use and understand. Moreover, queries
that are stated in natural language often leave the intended
selection and consumption semantics implicit (as purpose-
fully illustrated with the congestion example). It requires
significant application domain knowledge to derive them.

Formal semantics for an event query language that incor-
porates instance selection and consumption are presented in
[23]. However, it does not account for data in events and
events that are correlated by their data. Considering event
data can be quite important: in the above example con-
sumption and instance selection should only be done on a
per-car basis, i.e., we only want to select the last instance
of a “location” event for each car, not the last out of all “lo-
cation” events from all cars. Further [23] is based on time
points rather than intervals and does not support rules.

Dealing with event data is a particular strength of both
the declarative and the operational semantics put forward
in this work. This issue has been neglected in related work,
where events have typically been treated as simple propo-
sitional facts that have no associated data. We have seen
in the examples throughout this paper that data is impor-
tant and affects query semantics. Particularly we would like
to point out that there are queries, such as example (1),
where events are not correlated on a single parameter (vari-
able). Along the same line, aggregation of data from events
has rarely been considered in related work on event queries,
even though it is clearly needed in many applications. (A
notable exception is [30].)

Our approach extends quite straightforwardly to incorpo-
rate queries that also access non-event data, e.g., data from

databases. The need to access non-event data provides a
strong motivation to apply the foundations of database to
querying events, as done in this work. To give an example
where combination of event and non-event data is necessary,
reconsider the “overdue” queries (2) and (3). Assume that
perishable products have to be shipped within only 3 hours
and that there is a database relation perishable(p) listing all
perishable products. We can use the database relation as a
condition, not different from other conditions such as q < 10
in (2), leading to a rule

overdue(id) ← o : order(id, p, q), w : extend(o, 6h),
while w : not shipped(id, t),
perishable(p)

Declarative semantics can be extended to include in its inter-
pretation a set D of database facts in addition to the event
stream E. Note that deductive rules about non-event data
can also be accommodated. For operational semantics, this
simply leads to a join between event tuples and tuples from
the database. Note that the join should usually be evaluated
with event tuples driving retrieval of database tuples.

Combining non-event data with event data raises a po-
tential issue when the non-event data changes during the
detection of the (composite) event. It then becomes rele-
vant when the non-event data is accessed. Our declarative
semantics could be extended so that it has not a single set D
of database facts but a sequence of such sets with associated
validity times. Operational semantics would either have to
obey restrictions that make sure that non-event data is re-
trieved at the correct time or incorporate constructs that
allow to retrieve a specific version of a database. An exam-
ple for the latter is the “rollback operator” of [28].

Maybe the most important strength of using relational al-
gebra as a basis for operational semantics it that it allows
for well-known optimizations, in particular based on query
rewriting, as well as new optimizations based on temporal
conditions. Optimization can be expected to become as im-
portant for event queries as it is for database queries. So
far however, there has been little study on rewriting event
queries. Formal foundations for event queries, in particular
with a clean separation of declarative and operational se-
mantics as in this article, can be argued to be a key enabler
for future research on optimization.

6. CONCLUSION
The results outline in this article are part of ongoing work

on the high-level event query language XChangeEQ, which
supports querying events in XML formats and deductive
rules. We have presented declarative and operational se-
mantics for event queries that aim at making well-known
approaches and results from the database field applicable to
events queries. Our approach emphasizes the necessity to
access data in events when querying and correlating events.
It includes support for deductive rules, an important simple
and effective abstraction and reasoning mechanism.

7. ACKNOWLEDGMENTS
This research has been funded by the European Commis-

sion and by the Swiss Federal Office for Education and Sci-
ence within the 6th Framework Programme project REW-
ERSE number 506779 (http://rewerse.net).



8. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] R. Adaikkalavan and S. Chakravarthy. SnoopIB:
Interval-based event specification and detection for
active databases. Data and Knowledge Eng., 59(1),
2006.

[3] A. Adi and O. Etzion. Amit — the situation manager.
Int. J. on Very Large Data Bases, 13(2), 2004.

[4] J. F. Allen. Maintaining Knowledge About Temporal
Intervals. Communications of the ACM, 26(11), 1983.

[5] R. S. Barga and H. Caituiro-Monge. Event correlation
and pattern detection in CEDR. In Proc. Int.
Workshop Reactivity on the Web, 2006.

[6] B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P.-L.
Pătrânjan. Reactive rules on the web. In Reasoning
Web, Int. Summer School, LNCS. Springer, 2007.

[7] F. Bry and M. Eckert. A high-level query language for
events. In Proc. Int. Workshop on Event-driven
Architecture, Processing and Systems, 2006.

[8] F. Bry and M. Eckert. Twelve theses on reactive rules
for the Web. In Proc. Int. Workshop Reactivity on the
Web, 2006.

[9] F. Bry and M. Eckert. Rule-Based Composite Event
Queries: The Language XChangeEQ and its
Semantics. In Proc. Int. Conf. on Web Reasoning and
Rule Systems, 2007.

[10] F. Bry and M. Eckert. Temporal order optimizations
of incremental joins for composite event detection. In
Proc. Int. Conf. on Distributed Event-Based Systems,
2007.

[11] F. Bry, M. Eckert, and P.-L. Pătrânjan. Reactivity on
the Web: Paradigms and applications of the language
XChange. J. of Web Engineering, 5(1), 2006.

[12] F. Bry, N. Eisinger, T. Eiter, T. Furche, G. Gottlob,
C. Ley, B. Linse, R. Pichler, and F. Wei. Foundations
of rule-based query answering. In Reasoning Web, Int.
Summer School, LNCS. Springer, 2007.

[13] A. P. Buchmann, J. Zimmermann, J. A. Blakeley, and
D. L. Wells. Building an integrated active OODBMS:
Requirements, architecture, and design decisions. In
Proc. Int. Conf. on Data Engineering, pages 117–128,
1995.

[14] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and
S.-K. Kim. Composite events for active databases:
Semantics, contexts and detection. In Proc. Int. Conf.
on Very Large Data Bases, 1994.

[15] Common Base Event. www.ibm.com/developerworks/
webservices/library/ws-cbe.

[16] C. L. Forgy. A fast algorithm for the many
pattern/many object pattern match problem. Artif.
Intelligence, 19(1), 1982.

[17] A. Galton and J. C. Augusto. Two approaches to
event definition. In Proc. Int. Conf. on Database and
Expert Systems Applications, 2002.

[18] H. Garcia-Molina, J. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2001.

[19] N. H. Gehani, H. V. Jagadish, and O. Shmueli.
Composite event specification in active databases:
Model & implementation. In Proc. Int. Conf. on Very
Large Data Bases, 1992.

[20] T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In Proc. Int. Conf. on
Management of Data (SIGMOD), 1995.

[21] M. Gudgin et al. SOAP 1.2. W3C recomm., 2003.

[22] A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applications. IEEE Data Eng. Bull., 18(2), 1995.

[23] A. Hinze and A. Voisard. A parameterized algebra for
event notification services. In Proc. Int. Symp. on
Temporal Representation and Reasoning, 2002.

[24] Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML
query engine for network-bound data. VLDB J.,
11(4), 2002.

[25] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1993.

[26] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, 2002.

[27] M. Mansouri-Samani and M. Sloman. GEM: A
generalised event monitoring language for distributed
systems. Distributed Systems Engineering, 4(2), 1997.

[28] L. E. McKenzie and R. T. Snodgrass. Extending the
relational algebra to support transaction time. In
Proc. Int. Conf. on Management of Data (SIGMOD),
1987.

[29] D. Moreto and M. Endler. Evaluating composite
events using shared trees. IEE Proceedings —
Software, 148(1), 2001.

[30] I. Motakis and C. Zaniolo. Temporal aggregation in
active database rules. In Proc. Int. Conf. on
Management of Data (SIGMOD), 1997.

[31] K. A. Ross, D. Srivastava, and S. Sudarshan.
Materialized view maintenance and integrity
constraint checking: Trading space for time. In Proc.
Int. Conf. on Management of Data (SIGMOD), 1996.

[32] C. Sánchez, M. Slanina, H. B. Sipma, and Z. Manna.
Expressive completeness of an event-pattern reactive
programming language. In Proc. Int. Conf. on Formal
Techniques for Networked and Distrib. Systems, 2005.

[33] S. Schaffert. Xcerpt: A Rule-Based Query and
Transformation Language for the Web. PhD thesis,
Inst. f. Informatics, U. of Munich, 2004.

[34] S. Schaffert and F. Bry. Querying the Web
reconsidered: A practical introduction to Xcerpt. In
Proc. Extreme Markup Languages, 2004.

[35] W. White, M. Riedewald, J. Gehrke, and A. Demers.
What is ‘next’ in event processing? In Symp. on
Principles of Database Systems (PODS), 2007.

[36] D. Zimmer and R. Unland. On the semantics of
complex events in active database management
systems. In Proc. Int. Conf. on Data Engineering,
1999.

[37] Dagstuhl Seminar 07191 Event Processing,
http://www.dagstuhl.de/en/program/calendar/

semhp/?semnr=2007191.


