Visual Languages: A Matter of Style

Sacha Berger Frangois Bry Tim Furche

Institute for Informatics, University of Munich, Germany

{sacha.berger, francois.bry, tim.furche}@ifi.lmu.de

Christoph Wieser

Salzburg Research, Austria

christoph.wieser@salzburgresearch.at

Abstract

Styling has become a widespread technique with the advent of the Web and of
the markup language XML. With XML, application data can be modeled after the
application logic regardless of the intended rendering. Rendering of XML docu-
ments is specified using style sheet languages like CSS. Provided the styling lan-
guage offers the necessary capabilities, style sheets can similarly specify a visual
rendering of modeling and programming languages. The approach described in
this article considers visual languages that can be defined as a 1-to-1 visualization
of (an abstract syntax of) a textual language. Though the approach is obviously
limited by the employed style sheet language, its advantages are manifold: (a) vi-
sualization is achieved in a systematic manner from a fextual counterpart which
allows the same paradigms to be used in several languages and ensures a close
conceptual relation between textual and visual rendering of a language; (b) visual
languages are much easier to develop than in ad-hoc manners; (c) the capability
for adaptive styling (based on user preference such as disabilities or usage context
such as mobile devices) is inherited from Web style sheet languages such as CSS.

To make CSS amenable to visual rendering of a large range of data model-
ing and programming languages, this article first introduces limited, yet powerful
extensions to CSS. Then, it demonstrates the approach on a use case, the logic-
based Web query and transformation language Xcerpt. Finally, it is argued that the
approach is particularly well-suited to logic-based languages in general.

1 Introduction

Styling has become a widespread technique with the advent of the Web and of the
markup language XML. The success of style sheet languages such as CSS is based on
the ability to separate the conceptual or logical structure of Web data (be it in HTML or
XML format) from the visual presentation of that data. Such a separation is convenient
for adaptive presentation of content based on user preferences or usage context (in
particular, for human as well as machine users such as search engine bots), for agile
management and rapid development of Web sites, and for separating the concerns of

content and presentation.

85

Many of the reasons why styling has succeeded for visualizing data apply also to the
visualization of programs (i.e., of data modeling and programming languages), though
interactive features become possibly even more important. The advantages of styling
for data are inherited: easy conception of new visual languages; adaptive styling al-
lowing different presentations based on user, device, etc.; systematic relation between
abstract concepts, visual, and textual rendering of the language limiting impedance
mismatch when switching between different renderings of a language. A further ad-
vantage is that the approach inherently permits “round-trips”: A program developed so
far as text (visually, resp.) can be further developed visually (as text, resp.).

Obviously, this approach is limited by the capabilities of the style sheet language
employed. We choose in this article CSS for its widespread use and impressive visu-
alization abilities: recent developments in the area of Web design and rich interfaces
for the Web as well as the development of CSS 3.0 demonstrate the versatility of CSS-
based visualization. The days of strictly hierarchical visualization are over with fea-
tures such as absolute positioning supported by all mainstream browsers. The only
remaining limitations of CSS are the rather rigid box model (which makes, e.g., ad-hoc
curves impossible) and the limited interactivity features. The first limitation is start-
ing to get addressed by recent proposals to add free-style drawing to HTML and CSS
(cf. canvas element). The resulting flexibility in visualization is demonstrated by
applications such as Yahoo! Pipes!.

A first step to address the limitations to interactivity is proposed in this article:
a limited, yet far reaching extension to the style sheet language CSS that makes it
better suited for the rendering of not only data but also programs where interactive
behavior becomes even more central. This extension (as well as the entire approach)
is demonstrated on a use case, the logic-based Web query and transformation language
Xcerpt.

The visualization considered in this article is deliberately simple, so as to be real-
izable with a rather limited extension, called here CSSNC, of the dominant Web style
sheet language CSS. The generality of the approach should, nonetheless, become ev-
ident: Instead of CSS or CSSNC a style-sheet language offering other visualizations
could be used.

XML source Presentation
1 <bib>
2 <book year="1994" id="42" - p—
3 <title> y id 42
4 TCP/IP Illustrated e
5 </title> TCP/IP Illustrated |
6 <author> author]
. |

Figure 1: XML document (left side) and rendering using CSSNC (right side).

CSSNC is a novel extension of CSS 3, the latest version of CSS, introducing just a
few novel constructs for interactive or dynamic rendering and for markup visualization.
This limited extension of CSS 3 turns out to enable rather advanced visualization of
programs. Even though CSSNC is a limited and conservative extension of CSS, it adds
considerably to the power of CSS allowing (a) to specify many forms of (interactive or)
dynamic styling; (b) to generalize markup visualization; (c) to integrate the keyboard as
input device (where CSS 3 mostly treats only a pointer input device such as a mouse).

Uhttp://pipes.yahoo.com/pipes/

86

Thus, CSSNC allows for a declarative, concise, and simple specification of dynamic
document rendering in particular, when compared to current state-of-the-art techniques
such as ECMA Script [10]. The same applies for markup visualization where currently
far more complex technologies such as XSLT [13] must be employed.

2 CSS in a Nutshell

CSS 3 and its predecessors have been developed to simplify changes of the content as
well as of the presentation of HTML and XML documents by separating content from
presentation. It specifies formatting using rather simple guarded rules with formatting
instructions. The following rule demonstrates a well-known static styling feature:

a { text-decoration: underline; }

Intuitively, the rule reads as “if an element matches a, then format it by underlining
its contained text”. The left-hand, or selector, of the CSS rule selects HTML anchors
(denoted as a elements). The declaration on the right-hand side assigns the styling
parameter to XML elements matched by the selector of the rule.

Also, some dynamic styling features are offered in CSS 3. For instance, the back-
ground color of an HTML anchor can be switched to yellow while the mouse cursor is
hovering (: hover) over it:

a:hover { background-color: yellow; }

Markup especially in XML documents often conveys application relevant infor-
mation (e.g., the role of a person associated with a book—author, editor, publisher,
reviewer, etc.). Therefore, it might be useful to visualize it. However, CSS 2.1 and
CSS 3 offer quite limited means for markup visualization which, in current Web appli-
cation, often forces the use of other, less declarative technology to complement CSS
such as ECMA script or server-side scripting languages. The following subsections 2.1
to 2.3 briefly introduce novel static CSSN® rules mainly aiming at visualizing XML
markup. Finally Section 2.4 introduces the rule-based interface for dynamic document
styling. Full details on how CSSNO extends CSS 3 can be found in [14].

2.1 Markup Insertion

CSS 3 allows the insertion of plain text specified in a CSS style sheet. The CSS
emphpseudo-elements : :before and ::after cause insertion of text before and
after a selected XML or HTML element.

CSSNG extends these pseudo-elements of CSS 3. In addition to inserting plain
text in CSS 3, the CSSNC functions element (NAME, ATTRIBUTES, VALUE) and
attribute (NAME, VALUE) provide in addition means for inserting XML elements
and attributes before and after XML elements. The following example inserts a ele-
ments with a title-attribute of value “Tab” and content “element” before each element
in an XML document. See Figure 3 how this can then be employed to visualize these
new elements as “tabs” for hiding or unhiding information.

*::before { content: element ("a",
attribute ("title", "Tab"),
"element") }

87

2.2 Markup Querying

CSS 3 provides the function attr (X) for querying the content of a known XML
attribute X of an XML element. The name of an XML element and its XML attributes
can not be queried. Implementing markup visualization as in Figure 1, i.e., where the
name of an element is used as content of a newly created element to make the markup
visible, without generalized markup querying means one rule for every XML element
type like the XML bib element in Fig. 1.

CSSNE adds the function element-name () yielding the name of the currently
selected XML element. Furthermore, one XML element can host several XML at-
tributes. Therefore, CSSNC offers attribute rules selecting XML attributes instead of
XML elements. The CSSNC functions attribute-name () and —value () query
XML attribute names and values in the context of a selected XML element. The ex-
ample in Figure 2 implements a tab in front of each XML element listing the XML
element name and all of the XML elements’ attributes including their values as shown
in Figure 1.

XML source (see Figure 1)

o [+ <vook [yearfrissan [safrazes .. </books ..

CSSNG style sheet

1 x»::before { content:
2 element ("span", element ("span", element-name ())
3 { element ("span", attribute-name() " "
4 attribute-value ())
5 1)
o |}
Resulting XML tree
1 ...
2 book
3 1994
4 42
5
6 <book year="1994" id="42"> ... </book> ...

Figure 2: Generation of tabs. The presentation in Figure 1 is obtained by rendering the
resulting XML tree using further CSS 3 means.

2.3 Depth-dependent Styling

Styling depending on breadth (i.e., on position among siblings) is planned in CSS 3
[7]. Tables, for instance, can be styled using alternating background colors for each
line. CSSNC additionally offers styling depending on the depth (i.e., position among
ancestors) of an XML element in an XML document: :nth-descendant (an+b)
restricts selections to XML elements having an + b ancestors.

Figure 3 demonstrates the visualization of a highly nested XML document with
colors repeating on every third level. On the left side this rendering is realized using

88

CSSNG and alternatively using CSS 3. Thanks to its depth-dependent styling features,
the upper CSSNC style sheet needs only three rules. The CSS 3 style sheet below needs
one rule for every level. Hence, styling in CSS 3 is possible up to a certain depth only
as shown on the right side of Figure 3 using the CSS 3 style sheet on the lower right
side of Figure 3. Such a styling is also useful for applications such as the visualization
of threads in a discussion forum.

CSSNG Presentation using CSS 3

1 x:nth-descendant (3n+1) { background-color: A; } delement
2 x:nth-descendant (3n+2) { background-color: B; } [atamant]
3 «:nth-descendant (3n+3) { background-color: C; }

Elemenll

CSS 3 !

:.':me'tl

background-color: element]
background-color:
background-color:
background-color:
background-color:
background-color:

same color
r i

element[j
background-color:
background-color: B; } element| ﬁ

eleme ‘

*
QWP owp

z

SCwUa U AW —

*

[
*
*
*
*
*
*

elemen

elemen

Figure 3: Comparing Depth-dependent Styling using CSSNC and CSS 3.

2.4 Dynamic Styling Generalized

Dynamic styling is necessary to support (basic) interactivity, i.e., to change formatting
(position, color, font, etc.) based on user input such as mouse clicks or move. CSS 3 is
limited to the dynamic pseudo-class :hover. This construct allows dynamic styling
in the local context of the mouse cursor only as demonstrated in Section 2. This is
not sufficient to implement a behavior like folding a tab as demonstrated in Section 5:
when the mouse cursor moves away, the cursor does no longer hover over the selected
XML element, and its tab would be automatically unfolded.

CSSNS introduces dynamic pseudo-classes for all HTML intrinsic events [1] such
as onclick or onkeypress (see [14] for sample applications). Instead of using
HTML intrinsic event attributes like for scripting languages, CSSNC allows a stan-
dalone specification of dynamic styling in separate CSSNC files that can be applied for
multiple documents. The following example in Figure 4 shows a rather simple dynamic
CSSNG rule.

a:onclick (10) { background-color: green; }

Figure 4: Dynamic Styling of an adaptive hyperlink (CSSNG).

The rule in Figure 4 implements an adaptive hyperlink. After 10 clicks on the
hyperlink the background color changes to green meaning that the hyperlink on the
Web page is often visited by a specific user.

This extension makes it possible to apply dynamic styling on different sections of
an XML document at the same time. For instance if two hyperlinks were clicked ten
times in a Web page, both will be presented with different background colors.

89

Similar extensions using HTML intrinsic events have been already proposed by the
W3C [8]. The following paragraphs introduce the novel capabilities of CSSNC:

Recurrence Patterns. All CSSNC dynamic pseudo classes support recurrence pat-
terns, an+b, as parameters. For instance the CSSNG gelector * :onclick (3n+1)
detects the first, the fourth, the seventh, etc. click on an arbitrary XML element. More
generally, a CSSNG selector fires, if an + b events occurred before.

On one hand such recurrence patterns allow to reuse CSSNC rules for folding and
unfolding as demonstrated in the following paragraph. On the other hand recurrence
patterns allow to “delay” the application of rules up until a number of events, for in-
stance clicks, as demonstrated in the previous Section (see adaptive hyperlink above).

Dynamic Styling Combined. A noticeable feature of the (novel) dynamic pseudo-
classes of CSSNY is their compatibility with CSS 3 combinators, which allow to specify
tree patterns.

Figure 5: Folded visualization of an XML element title. The corresponding un-
folded example is shown in Figure 1.

Stevens

A CSS 3 selector is an alternating sequence of so-called simple selectors (already
informally introduced in Section 2) and combinators. For instance, the combinator +
means that the simple selector on its left side must be a preceding sibling of the simple
selector on the righthand side. The CSS declaration (in curly braces) is only applied to
the XML element matched by the matching simple selector.

The following example (see Figure 6) implements alternating folding and unfold-
ing for the visualization of arbitrary (simple selector) XML elements (see Figure 5).
A click on a tab of a visualized XML element like folds its visualization.

Another click on a tab unfolds it (see in Figure 1):

1 tab:onclick (2n+l) + * {display:none} Fold on odd number of clicks.
2 tab:onclick (2n+2) + * {display:block} Unfold on even number of clicks.

Figure 6: Combined dynamic styling in CSSNC (rendering in Figure 5).

In the example above, the lefthand selector of the first CSSNC rule above is com-
posed of the two simple selectors tab:onclick (2n+1) and = combined with the
CSS 3 combinator, +. The visualization of an XML element matched by the simple
selector » disappears, if a mouse click was performed on its preceding sibling XML
element, while its tab stays visible.

90

Structure-Independent Styling. A static CSS 3 styling rule is applied to all XML
elements matching its selector. A dynamic CSS 3 styling rule is applied only to XML
elements being in the context of an input device such as an XML element lying under
the mouse cursor. CSSNC abolishes this restriction and allows (novel) so-called mono-
rama and panorama selections as demonstrated in Figure 7: The Author element
on the left side is highlighted, while the mouse cursor is hovering over the Author
element on the right side.

1 Author { background-color: black; }
2 Author:hover ? Author { background-color: white; }

Figure 7: Highlighting of Xcerpt variables.

The CSS 3 rule in line 1 defines the standard background black for XML Author
elements. In line 2 the CSSNY combinator 2, called if, is applied as follows: If an
XML Author element is hovered in an XML document, set the background color of
all XML Author elements to white.

A proof-of-concept prototypical implementation of CSSNG was implemented as
part of a diploma thesis [14] and presented [8].

3 Styling of Logic Languages

The approach described in the previous section to conceive a visual language as a ren-
dering, or styling, of a textual language seems for the following two reasons especially
convenient for logic languages:

e Logic languages are declarative, i.e. they focus on both the structural and con-
ceptual organization of the data.

e Logic languages are often “answer closed” in the sense of query languages:
queries or conditions resemble data and data (i.e., answers) can be used in place
of queries. This makes style sheet languages developed for data visualization
easily adaptable for program visualization since they are already able to visual-
ize the data.

e Logic languages are often referentially transparent allowing mostly context-in-
dependent visualization of language constructs. In particular, this allows visual
aids such as highlighting of related parts in a program or rule (e.g., variable
occurrences or predicate symbols).

e Logic languages come in families that share traits, like e.g. modal languages,
rule-based languages, logic programming languages, frame logic languages. With
the approach proposed, “visualizations” can be rather easily developed and ap-
plied to various languages of a same language family.

For these reasons, it is the firm belief of the authors that the approach proposed in
this article has the potential to boost the development and testing of visual languages,
especially of visual logic languages.

91

4 visXcerpt — the Visual Twin Sibling of Xcerpt

As an example of the visualization of a textual language using the presented approach
and CSSNY, the Web query and transformation language Xcerpt [12] and its visual
counterpart visXcerpt [3] are presented. Xcerpt is a rule based deductive language in
the spirit of SQL or Datalog but for semi-structured data. As a textual language, it
comes in two syntax flavors — an abbreviated syntax and an XML syntax. Rules con-
sist of a head, also called construct pattern and a body consisting of logically connected
query patterns. Query and construction share values by means of shared variables, rules
query each other heads employing forward or backward chaining. Construct patterns
may contain special grouping constructs to collect multiple variable bindings in one re-
sult, queries may consist of incomplete query patterns with incompleteness in breadth
and/or depth and/or order, reflecting the incertitude about size and structure of doc-
uments on the web. Patterns are hence like “examples” of web data searched for in
given documents.

The central part of visXcerpt, the visual rendering of Xcerpt, is the visualization
of Web data, of XML documents. As Xcerpt itself comes in XML syntax, half the
job is done by visualizing XML.? Further aspects, like partiality, grouping constructs
and variables are then added to get a full featured visualization of query and construct
patterns. Rules are just represented as horizontal aligned head and body, related by an
arrow, though more involved visualizations (e.g., grouping by related root labels) can
be realized with CSSNC.

Term Visualization. Web data and patterns are considered to have a term like struc-
ture. Terms are rendered as boxes with their name as a tab on the top, the box contains
all tabbed boxes of the subterms in the order they occur. The rendering is conceived to
be suitable for most web browsers, considering that they are a wide spread technology
with high adaptability to various screen sizes and resolutions. Order is given by a left-
to-right and top-to-bottom flow layout, but the layout directions should be adapted to
local writing habits of the user’s culture. Width is given by the width of the display or
browser employed. Nested boxes are further distinguished using colors, hence colors
represent nesting depth. To be able to make a reasonable selection of well assorted, dis-
tinguishable and pleasant color themes, colors of upper levels are recycled for deeper
nestings.

Graph Visualization On the Web, graph structures also need to be represented, e.g.
RDF [11] data representing graph shaped structures or hyperlink structure. In textual
representations of graph structures, references are used along a spanning tree of the
graph. The presented approach of visualizing such graph structures is to model the
references as hyperlinks in a web browser. This way, even very large graph structures
can be represented and access to any references item is achieved by user interaction
with constant complexity — a click on a hyperlink. While browsers often provide some
means of navigating back along edges represented by hyperlinks, it is arguably useful
to explicitly give hyperlinks for reverse traversal of edges, as hence the user is not
restricted in his backward movement along edges he just visited.

2To some extent, this applies to any language as we can always consider for styling the XML serialization
of the abstract syntax tree of a program.

92

Information focusing For large documents, it is of vital necessity to give users the
ability to hide temporarily unneeded information or to focus on relevant data. This is
achieved by means of folding in or out terms behind their name tagged tabs. While
elements are aligned vertically, tabs are first aligned horizontally and then vertically,
saving even more space. The concept is strongly inspired by tree browser visualization
as e.g. seen on the well known Windows file browser.

At this level, pure static visualization starts to merge with user interaction. A vi-
sualization with adequate support of user interaction, especially of editing, is indeed
much more useful than a static visualisation.

Textual Xcerpt Program, and visXcerpt rendering of it.
1 CONSTRUCT rule :
2 results| in file:proceedings04.xml
3 all result|
4 var Title, —|
5 var Author ISShlts
6 11 result
7 FROM
8 in(resource="file:bib.xml") Title &
9 proceedings04 [[a”
10 papers| [
1 paper|[[
12 var Title as title[[]] ,
13 var Author as author[[]]
14 11
15 11
16 11
17 END

Figure 8: A single rule Xcerpt program (in abbreviated textual syntax) along with its
visXcerpt rendering — the query part exploits a partial pattern (indicated by dotted
lines in the visualization) to search for papers in a proceedings database, constructing
title/author pairs all grouped in a list of results. All 7itle variables are highlighted as
the mouse is hovering above one of them in visXcerpt.

A Special Purpose Editor Model For textual languages, copy-and-paste and text
typing based editors are wide spread. Central to textual editing, is a cursor concept,
that usually is a separator of the one dimensional program. For the presented visual
approach, a separator seemed not intuitive, hence a context metaphor is used for edit-
ing: each box is a context, it is possible to cut, copy or delete it with or without its
sub boxes, it is possible to paste the content of the cut/copy buffer into, before, after or
around a context and hence term. The rich copy and paste model is accompanied by a
template concept, giving access to all program constructs and possibly example terms
or structures that can be altered, reduced or extended.

5 Realizing CSS™¢: CSS & XSLT

As a proof-of-concept, we chose to implement CSSNC by a combination of XSLT
transformations and reductions to standard XHTML and CSS to allow for maximum
portability and fast implementation.

93

All data formats and transformations except CSSNC Parser are based on W3C
standards. Except for the CSS and CSSNC parsers, all other program transformations
are implemented in XSLT [13]. The XSLT transformations essentially evaluate the
(static) rules in the CSSNC stylesheet statically and adorn the XHTML elements to
allow the use of standard CSS (and ECMA Script for the dynamic styling). The Styler
is the heart of the system. It processes all XHTML elements in the document tree of
an (Un)styled Document recursively. Each XHTML element passes through one test
for each CSSNC rule in a CSSNO style sheet. If a test succeeds, the XHTML style
attribute of the current XHTML element is modified. The tests are implemented in
XPath [9]. Since tests are executed from the perspective of each XML element, CSSNC
selectors need to be translated to XPath selecting XML elements in reverse direction
as demonstrated in the following example (see Figure 9):

CSSNG XPath
:onclick(2n+1) + self: /precedlng sibling: [
span[@class='onclick’] mod 2 =

Figure 9: Translation of CSS Selectors in XPath (CSSNO).

6 Outlook and Conclusion

The presented approach — obtaining a visual language by mere rendering or styling of
a textual language — has been explored with the textual query language Xcerpt. To the
largest extend, this has been achieved using standard CSS, for the most salient features
however an extension of CSS has been conceived.

6.1 Conclusion

visXcerpt has been prototypically implemented and successfully applied for the presen-
tation of Xcerpt [6] [5], widely easing the comprehension of the concepts of Xcerpt.
visXcerpt’s editor model turned out to be convenient for Xcerpt programming tasks
from the area of HTML content extraction, creation and wrapping, over XML data
transformation to Semantic Web and hybrid Web and Semantic Web reasoning [4].

CSSNG as an extension of CSS turned out to be easily realizable without heavy
computational overhead compared to CSS 2 and CSS 3. It proved itself to be not only a
tool for the implementation of visXcerpt, but especially for sophisticated visualization
of XML data with easily realizable domain specific behavior.

The approach of conceiving a visual language based on a textual back-end turned
out convenient in both cases, for the creator of the visual language as well as for the
programmer using the language — creating a visual language as a rendering of a textual
one was reasonably easy, and programmers using it where pleased to be able to switch
between textual and visual representation.

To the best of the knowledge of the authors similar generic approaches of devel-
oping visual languages as mere rendering using CSS and extensions have not been
proposed so far.

94

6.2 Outlook

Further interesting research in the area of Xcerpt/visXcerpt is to investigate about type
support, not only in the textual language for checking and validation of programs [2],
but also in the editing process. This could help novice users to by just providing edit-
ing features that lead from one valid program to another, as well as providing a type
based template approach over the example based approach. In the area of generic
visualization of textual languages, it is needed to systematically investigate further fea-
tures/functionalities that would be desirable for visual languages and what existing
styling languages would be a convenient basis for adding these features. It would be
interesting to develop a few style-sheet languages which could render various textual
modeling and/or programming languages as visual languages after various visualiza-
tion paradigms. The Semantic Web logic languages RDF, OWL and the new Rule
Interchange Format (RIF) would be promising candidates for such investigations.

References

[1] S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P. Grosso, E. Gutentag,
A. Milowski, S. Parnell, J. Richman, and S. Zilles. HTML 4.01. W3C, 1999.

[2] Berger, Coquery, Drabent, and Wilk. Descriptive typing rules for xcerpt. In Proc.
of 3rd Workshop on Principles and Practice of Semantic Web Reasoning, 2005.

[3] S. Berger. Conception of a Graphical Interface for Querying XML. Diploma
thesis, Institute for Informatics, LMU, Munich, 2003.

[4] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and C. Wieser. Querying the
standard and Semantic Web using Xcerpt and visXcerpt. In Proc. of European
Semantic Web Conference, 2005.

[5] S. Berger, F. Bry, and T. Furche. Xcerpt and visXcerpt: Integrating Web Query-
ing. In Proc. of Programming Language Technologies for XML, 2006.

[6] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: From
Pattern-Based to Visual Querying of XML and Semistructured Data. In Pro-
ceedings of 29th Intl. Conference on Very Large Databases, 2003.

[7] B. Bos. Cascading Style Sheets Under Construction. W3C, 2005.

[8] F. Bry and C. Wieser. Web Queries with Style: Rendering Xcerpt Programs with
CSS-NG. In Proc. of 4th Workshop on PPSWR, 2006.

[9] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, 1999.
[10] ECMA. Standard ECMA-262, ECMAScript Language Specification, 1999.
[11] O. Lassila and R. R. Swick. Resource Description Framework. W3C, 1999.

[12] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In Proc. of Extreme Markup Languages, 2004.

[13] W3C. Extensible Stylesheet Language (XSL) 1.0, 2001.

95

[14] C. Wieser. CSS™¢: An Extension of the Cascading Styles Sheets Language
(CSS) with Dynamic Document Rendering Features. Diploma thesis, Institute
for Informatics, LMU, Munich, 2006.

96

