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Abstract.
The paper presents an approach to reasoning about web service

composition using a temporal action theory. Web services are de-
scribed by specifying their interaction protocols in an action theory
based on a dynamic linear time temporal logic. The proposed frame-
work provides a simple formalization of the communicative actions
in terms of their effects and preconditions and the specification of
an interaction protocol by means of temporal constraints. We adopt
a social approach to agent communication, where the action effects
can be described in terms of changes in the social state, and protocols
in terms of creation and satisfaction of commitments among agents.
We show how the problem of web service composition can be formu-
lated in the action theory as a planning problem, and we show how it
can be solved using an automata based approach.

1 Introduction

One of the central issues in the field of multi-agent systems con-
cerns the specification of conversation policies (or interaction pro-
tocols), which govern the communication between software agents
in an agent communication language (ACL) [4]. To allow for the
flexibility needed in agent communication [14, 10] new approaches
have been proposed, which overcome the limitations of the tradi-
tional transition net approach, in which the specification of inter-
action protocols is done by making use of finite state machines. A
particularly promising approach to agent communication, first pro-
posed by Singh [22], is the social approach [5, 11, 14]. In the social
approach, communicative actions affect the “social state” of the sys-
tem, rather than the internal (mental) states of the agents. The social
state records social facts, like the permissions and the commitments
of the agents.

In this paper we adopt a social approach in the specification of the
interactions among Web services and, in particular, we address the
problem of service composition[23], where the objective is “to de-
scribe, simulate, compose, test, and verify compositions of Web ser-
vices” [15]. In our proposal Web services are described by specifying
their interaction protocols in an action theory based on a dynamic
linear time temporal logic. Such a logic has been used in [7, 9] to
provide the specification of interaction protocols among agents and
to allow the verification of protocol properties as well as the veri-
fication of the compliance of a set of communicating agents with a
protocol.
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From several points of view the web service domain is well suited
to this kind of formalization. The proposed framework provides a
simple formalization of the communicative actions in terms of their
effects and preconditions and the specification of an interaction pro-
tocol by means of temporal constraints. To accommodate the needs
of the application domain, in which information is inherently incom-
plete, in Section 2 we extend the action theory defined in [9] to deal
with incomplete information, by introducing epistemic modalities in
the language to distinguish what is known about the social state from
what is unknown.

We consider the problem of composing web services, by referring
to an example consisting of two services for purchasing and for ship-
ping goods. Both services have an interaction protocol with the same
structure: the customer sends a request to the service, the service
replies with an offer or by saying that the service is not available,
and finally, if the customer receives the offer, it may accept or refuse
it.

In Section 3 we show how to specify such interaction protocols,
by adopting a social approach. Communicative actions, such asoffer
or accept, are modeled in terms of their effects on the social state
(action laws). A protocol will be specified by putting constraints on
the executability of actions (precondition laws), and by introducing
temporal constraints specifying fulfillment of commitments. Several
verification problems concerning properties of the web services can
be modelled as satisfiability and validity problems in the logic. We
make use of an automata based approach to solve these problems
and, in particular, we work on the Büchi automaton which can be
extracted from the logical specification of the protocol.

In Section 4 we define the service composition problem as a plan-
ning problem, whose solution requires to build a conditional plan,
allowing the interaction with the component services. The plan can
be obtained from the B̈uchi automaton derived from the logical spec-
ification of the protocol. We will also briefly address other related
problems such as building a new service that is able to manage the
interactions between the customer and the two services, or proving
the correctness of a given service implementation with respect to the
specification of the interaction protocols.

2 The action theory

In this section we describe the action theory that is used in the specifi-
cation of the services. We first introduce the temporal logic on which
our action theory is based and its epistemic extension.

2.1 Dynamic Linear Time Temporal Logic

In this section we briefly define the syntax and semantics of DLTL as
introduced in [12]. In such a linear time temporal logic the next state



modality is indexed by actions. Moreover, (and this is the extension
to LTL) the until operator is indexed by programs in Propositional
Dynamic Logic (PDL).

Let Σ be a finite non-empty alphabet. The members ofΣ are ac-
tions. LetΣ∗ andΣω be the set of finite and infinite words onΣ,
whereω = {0, 1, 2, . . .}. LetΣ∞ =Σ∗∪Σω. We denote byσ, σ′ the
words overΣω and byτ, τ ′ the words overΣ∗. Moreover, we denote
by≤ the usual prefix ordering overΣ∗ and, foru ∈ Σ∞, we denote
by prf(u) the set of finite prefixes ofu.

We define the set of programs (regular expressions)Prg(Σ) gen-
erated byΣ as follows:

Prg(Σ) ::= a | π1 + π2 | π1; π2 | π∗

wherea ∈ Σ and π1, π2, π range overPrg(Σ). A set of finite
words is associated with each program by the usual mapping[[]] :
Prg(Σ) → 2Σ∗ .

Let P = {p1, p2, . . .} be a countable set of atomic propositions
containing> and⊥. We define:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

wherep ∈ P andα, β range over DLTL(Σ).
A model of DLTL(Σ) is a pairM = (σ, V ) whereσ ∈ Σω and

V : prf(σ) → 2P is a valuation function. Given a modelM =
(σ, V ), a finite wordτ ∈ prf(σ) and a formulaα, the satisfiability
of a formulaα at τ in M , written M, τ |= α, is defined as follows
(we omit the standard definition for the boolean connectives):

• M, τ |= p iff p ∈ V (τ);
• M, τ |= αUπβ iff there existsτ ′ ∈ [[π]] such thatττ ′ ∈ prf(σ)

andM, ττ ′ |= β. Moreover, for everyτ ′′ such thatε ≤ τ ′′ < τ ′4,
M, ττ ′′ |= α.

A formula α is satisfiable iff there is a modelM = (σ, V ) and a
finite wordτ ∈ prf(σ) such thatM, τ |= α.

The formulaαUπβ is true atτ if “ α until β” is true on a finite
stretch of behavior which is in the linear time behavior of the pro-
gramπ.

The derived modalities〈π〉 and [π] can be defined as follows:
〈π〉α ≡ >Uπα and[π]α ≡ ¬〈π〉¬α.

Furthermore, if we letΣ = {a1, . . . , an}, theU ,© (next),3 and
2 operators of LTL can be defined as follows:©α ≡ ∨

a∈Σ
〈a〉α,

αUβ ≡ αUΣ∗β, 3α ≡ >Uα, 2α ≡ ¬3¬α, where, inUΣ∗ ,
Σ is taken to be a shorthand for the programa1 + . . . + an. Hence
both LTL(Σ) and PDL are fragments of DLTL(Σ). As shown in [12],
DLTL(Σ) is strictly more expressive than LTL(Σ). The satisfiabil-
ity and validity problems for DLTL are PSPACE complete problems
[12].

2.2 Epistemic modalities

In the following we need to describe the effects of communicative
actions on the social state of the agents. In particular, we want to rep-
resent the fact that each agent can see only part of the social state as
it is only aware of some of the communicative actions in the conver-
sation (namely those it is involved in as a sender or as a receiver).
For this reason, we introduce knowledge operators to describe the
knowledge of each agent as well as the knowledge shared by groups
of agents. More precisely, we introduce a modal operatorKi to rep-
resent the knowledge of agenti and the modal operatorKA, where

4 We defineτ ≤ τ ′ iff ∃τ ′′ such thatττ ′′ = τ ′. Moreover,τ < τ ′ iff
τ ≤ τ ′ andτ 6= τ ′.

A is a set of agents, to represent the knowledge shared by agents in
A. Groups of agents acquire knowledge about social facts when they
interact by exchanging communicative actions. The modal operators
Ki andKA are both of typeKD. They are normal modalities ruled
by the axiom schemaKϕ → ¬K¬ϕ (seriality). Following the so-
lution proposed in [1], we restrict epistemic modalities to be used
in front of literals, and we neither allow nested applications of epis-
temic modalities nor we allow epistemic modalities to be applied to
boolean combination of literals. Hence, though logicKD45 is usu-
ally adopted to represent belief operators, here we do not need to add
the positive and negative introspection axioms.

The relations between the modalitiesKi andKA are ruled by the
following interaction axiom schema:KAϕ → Kiϕ, wherei ∈ A,
meaning that what is knowledge of a group of agents is also knowl-
edge of each single agent in the group. As usual, for each modality
Ki (respectively,KA) we introduce the modalityMi (resp.MA),
which is defined as the dual ofKi, i.e.Miϕ is¬Ki¬ϕ.

2.3 Domain descriptions

The social state of the protocol, which describes the stage of execu-
tion of the protocol from the point of view of the different agents,
is described by a set of atomic properties calledfluents, whose epis-
temic value in a state may change with the execution of communica-
tive actions.

Let P be a set of atomic propositions, thefluent names. A fluent
literal l is a fluent namef or its negation¬f . We introduce the notion
of epistemic fluent literalto be a modal atomKl or its negation¬Kl,
wherel is a fluent literal andK is an epistemic operatorKi or KA.
We will denote byLit the set of all epistemic literals.

An epistemic state(or, simply, a state) is defined as acomplete5

and consistent set of epistemic fluent literals, and it provides, for
each agenti (respectively for each group of agentsA) a three-valued
interpretation in which each literall is true whenKil holds, false
whenKi¬l holds, andundefinedwhen both¬Kil and¬Ki¬l hold.
Observe that, given the property of seriality, consistency guarantees
that a state cannot contain bothKf andK¬f , for some epistemic
modalityK and fluentf . In fact, fromKf it follows by seriality that
¬K¬f , which is inconsistent withK¬f .

In the following we extend the action theory defined in [9] to ac-
commodate epistemic literals.

A domain descriptionD is defined as a tuple(Π, C), whereΠ is
a set of (epistemic)action lawsandcausal laws, andC is a set of
constraints. Theaction lawsin Π have the form:

2(Kα → [a]Kl) (1)

2(Mα → [a]Ml) (2)

wherea ∈ Σ andKα is a conjunction of epistemic fluents of the
formKl1 ∧ . . .∧Kln, andMα is a conjunction of epistemic fluents
of the formMl1 ∧ . . . ∧Mln.

The meaning of (1) is that executing actiona in a state where
l1, . . . , ln are known (to be true) causesl to become known, i.e. it
causes the effectKl to hold. As an example the law2(Kfragile →
[a]Kbroken) means that, after executing the action of dropping a
glass the glass is known to be broken, if the action is executed in
a state in which the glass is known to be fragile. (2) is necessary
in order to deal withignoranceabout preconditions of the action
a. It means that the execution ofa may affect the beliefs about

5 A setS of epistemic fluent literals is complete if, for all literalsl and epis-
temic operatorsK, eitherKl ∈ S or¬Kl ∈ S.



l, when executed in a state in which the preconditions are consid-
ered to be possible. When the preconditions ofa are unknown, this
law allows to conclude that the effects ofa are unknown as well.
2(Mfragile → [a]Mbroken) means that, after executing the ac-
tion of dropping a glass, the glass may be broken, if the action is
executed in a state in which the glass may be fragile (i.e.K¬fragile
does not hold).

Thecausal lawsin Π have the form:

2((Kα ∧©Kβ) →©Kl) (3)

2((Mα ∧©Mβ) →©Ml) (4)

wherea ∈ Σ andKα is a conjunction of epistemic fluents of the
form Kl1 ∧ . . . ∧ Kln, Kβ is a conjunction of epistemic fluents of
the formKln+1 ∧ . . . ∧ Klm, and similarly forMα andMβ.

The meaning of (3) is that ifl1, . . . , ln are known in a state and
ln+1, . . . , lm are known in the next state, thenl is also known in the
next state. Such laws are intended to expresses “causal” dependen-
cies among fluents. Causal law (4) is defined similarly.

Theconstraintsin C are, in general, arbitrary temporal formulas of
DLTL. Constraints put restrictions on the possible correct behaviors
of a protocol. The kind of constraints we will use in the specification
of a protocol include the observations on the value of epistemic flu-
ent literals in theinitial state and the precondition laws. The initial
stateInit is a (possibly incomplete) set of epistemic literals, which
is made complete by adding¬Kl to Init whenKl 6∈ Init.

Theprecondition lawshave the form:2(α → [a]⊥), wherea ∈
Σ andα is an arbitrary non-temporal formula containing a boolean
combination of epistemic literals. The meaning is that the execution
of an actiona is not possible ifα holds (i.e. there is no resulting state
following the execution ofa if α holds). Note that, when there is no
precondition law for an action, the action is executable in all states.

The action theory described above relies on a solution to theframe
problemsimilar to the one described in [9]. A completion construc-
tion is defined which, given a domain description, introduces frame
axioms for all the frame fluents in the style of the successor state
axioms introduced by Reiter [20] in the context of the situation cal-
culus. The completion construction is applied only to the action laws
and causal laws inΠ and not to the constraints. The value of each
fluent persists from a state to the next one unless its change is caused
by the execution of an action as an immediate effect (effect of the
action laws) or an indirect effect (effect of the causal laws). We call
Comp(Π) the completion of a set of lawsΠ.

LetΠ be a set of action laws and causal laws. Both action laws and
causal laws can be equivalently written in the followingnormalized
form (where in action laws the second conjunct is omitted):

2(〈a〉> → ((Kα ∧ [a]Kβ) → [a]Kl))
2(〈a〉> → ((Mα ∧ [a]Mβ) → [a]Ml)).

The action laws and causal laws for a fluentf in Π can then have
the following forms:

2(〈a〉> → (Kαi ∧ [a]Kγi → [a]Kf))
2(〈a〉> → (Kβj ∧ [a]Kδj → [a]K¬f))
2(〈a〉> → (Mαi ∧ [a]Mγi → [a]Mf))
2(〈a〉> → (Mβj ∧ [a]Mδj → [a]M¬f))

We define the completion ofΠ as the set of formulasComp(Π)
containing, for all actionsa and fluentsf , the following axioms:

2(〈a〉> → ([a]Kf ↔
(
∨

i
(Kαi ∧ [a]Kγi)) ∨ (Kf ∧∧

j
(K¬βj ∨ ¬[a]Mδj))))

2(〈a〉> → ([a]K¬f ↔
(
∨

j
(Kβj ∧ [a]Kδj)) ∨ (K¬f ∧∧

i
(K¬αi ∨ ¬[a]Mγi)))).

These laws say that a fluentKf (K¬f ) holds either as (direct or
indirect) effect of the execution of some actiona, or by persistency,
sinceKf (K¬f ) held in the state before the occurrence ofa and its
negation is not a result ofa. Observe that the two frame axioms above
also determine the values in a state for[a]Mf and for[a]M¬f .

As a difference with [9], we do not distinguish between frame and
non-frame fluents in a domain description and in the following we
assume that all epistemic fluents are frame, that is, they are fluents to
which the law of inertia applies. The kind of non-determinism that
we allow here is on the choice of the actions to be executed, which
can be represented by the choice construct of regular programs.

3 Protocol specification

In the social approach [22, 24] an interaction protocol is specified by
describing the effects of communicative actions on the social state,
and by specifying the permissions and the commitments that arise as
a result of the current conversation state. These effects, including the
creation of new commitments, can be expressed by means ofaction
laws.

The action theory introduced above will be used for modelling
communicative actions and for describing the social behavior of
agents in a multi-agent system. In defining protocols, communicative
actions will be denoted byaction name(s,r), wheres is the sender
andr is the receiver. In particular, two special actions are introduced
for each protocolPn: begin Pn(s, r) andend Pn(s, r), which are
supposed to start and to finish eachrun of the protocol. For each pro-
tocol, we introduce a special fluentPn (wherePn is the “protocol
name”) which has to be true during the whole execution of the pro-
tocol: Pn is made true by the actionbegin Pn(s, r) and it is made
false by the actionend Pn(s, r).

3.1 Commitments and permissions

Among the most significant proposals to use commitments in the
specification of protocols (or more generally, in agent communica-
tion) are those by Singh [22], Guerin and Pitt [11], Colombetti [5].

In order to handle commitments and their behavior during runs
of a protocolPn, we introduce two special fluents. One represents
base-level commitmentsand has the formC(Pn, i, j, α) meaning
that agenti is committed to agentj to bring aboutα, whereα is an
arbitrary non temporal formula not containing commitment fluents.
The second commitment fluent modelsconditional commitmentsand
has the formCC(Pn, i, j, β, α) meaning that in protocolPn the
agenti is committed to agentj to bring aboutα, if the conditionβ is
brought about.

Commitments are created as effects of the execution of commu-
nicative actions in the protocol and they are “discharged” when they
have been fulfilled. A commitmentC(Pn, i, j, α), created at a given
state of a run, is regarded to be fulfilled in the run if there is a later
state in the run in whichα holds.

We introduce the followingcausal lawsfor automatically dis-
charging fulfilled commitments6:

(i) 2(©α →©Ki,j(¬C(Pn, i, j, α)))
(ii)2((Ki,j(CC(Pn, i, j, β, α)) ∧©β) →

©Ki,j(C(Pn, i, j, α)))

6 We omit the three similar rules withK replaced byM



(iii) 2((Ki,j(CC(Pn, i, j, β, α)) ∧©β) →
©Ki,j(¬CC(Pn, i, j, β, α)))

A commitment to bring aboutα is considered fulfilled and
is discharged (i) as soon asα holds. A conditional com-
mitment CC(Pn, i, j, β, α) becomes a base-level commitment
C(Pn, i, j, α) whenβ has been brought about (ii) and the condi-
tional commitment is discharged (iii).

We can express the condition that a commitmentC(Pn, i, j, α)
has to be fulfilled before the “run” of the protocol is finished by the
following fulfillment constraint:

2(Ki,j(C(Pn, i, j, α)) → Pn U α)

We will call Comi the set of constraints of this kind for all commit-
ments of agenti. Comi states that agenti will fulfill all the commit-
ments of which it is the debtor.

At each stage of the protocol only some of the messages can be
sent by the participants, depending on the social state of the conver-
sation.Permissionsallow to determine which messages are allowed
at a certain stage of the protocol. The permissions to execute com-
municative actions in each state are determined by social facts. We
represent them by precondition laws. Preconditions on the execution
of actiona can be expressed as:2(α → [a]⊥) meaning that actiona
cannot be executed in a state ifα holds in that state.

We callPermi (permissions of agent i) the set of all the precon-
dition laws of the protocol pertaining to the actions of which agenti
is the sender.

3.2 An example

Let us consider as an example a service for purchasing a good. There
are two roles: A customer, denoted by C, and a producer, denoted
by P. The communicative action of the protocol are:request(C, P ).
meaning that the customer sends a request for a product,offer(P ,C )
andnot avail(P, C), the producer sends an offer or says that the
product is not available,accept(C, P ) andrefuse(C, P ), the cus-
tomer accepts or refuses the offer. Furthermore, as pointed out be-
fore, there will be the actionsbegin Pu(C, P ) andend Pu(C, P )
to start and finish the protocol.

As mentioned before, the social state will contain only epistemic
fluents. We denote the social knowledge byKC,P , to mean that the
knowledge is shared byC andP .

The social state will contain the following fluents, which describe
the protocol in an abstract way:requested, the product has been
requested,offered , the product is available and an offer has been sent
(we assume that¬offered means that the product is not available),
accepted, the offer has been accepted. The fluentPu means that the
protocol is being executed.

Furthermore, we introduce some base-level commitments (to sim-
plify the notation, in the following we will useKw

C,P (f) as a short-
hand of the formulaKC,P (f) ∨ KC,P (¬f)):

C(Pu, C, P,KC,P (requested))
C(Pu, P, C,Kw

C,P (offered))
C(Pu, C, P,Kw

C,P (accepted))

We also need the following conditional commitments:

CC(Pu, P, C,KC,P (requested),Kw
C,P (offered))

CC(Pu, C, P,KC,P (offered),Kw
C ,P (accepted))

For instance, the first conditional commitment says that the producer
is committed to send an offer, or to say that the product is not avail-
able, if a request for the product has been made.

We can now give the action rules for the action of the protocol. We
assume all fluents to be undefined in the initial state (i.e., for each
fluentf , for each epistemic modalityK,¬Kf and¬K¬f hold in the
initial state), except for fluentPu which will be known to be false.
The execution ofbegin Pu(C, P ) andend Pu(C, P ) will have the
following effects:

2[begin Pu(C, P )]KC,P (Pu) ∧
KC,P (C(Pu, C, P,KC,P (requested))) ∧
KC,P (CC(Pu, P, C,KC,P (requested),Kw

C,P (offered)))∧
KC,P (CC(Pu, C, P,KC,P (offered),Kw

C ,P (accepted)))
2[end Pu(C, P )]KC,P (¬Pu)

After starting the protocol, the customer is committed to make a re-
quest, and the conditional commitments are created.

The action laws for the remaining actions are the following:

2[request(C, P )]KC,P (requested)
2[offer(P ,C )]KC ,P (offered)
2[not avail(P, C)]KC,P (¬offered)
2[accept(C, P )]KC,P (accepted)
2[refuse(C, P )]KC,P (¬accepted)

We can now give the preconditions for the actions of the protocol.

2(¬KC,P (¬Pu) → [begin Pu(C, P )]⊥)
2((¬KC,P (Pu)∨KC,P (requested)) → [request(C, P )]⊥)
2((¬KC,P (Pu) ∨ ¬KC,P (requested) ∨ Kw

C,P (offered)) →
[offer(P ,C )]⊥)

2((¬KC,P (Pu) ∨ ¬KC,P (requested) ∨ Kw
C,P (offered)) →

[not avail(P, C)]⊥)
2((¬KC,P (Pu) ∨ ¬KC,P (offered) ∨ Kw

C ,P (accepted)) →
[accept(C, P )]⊥)

2((¬KC,P (Pu) ∨ ¬KC,P (offered) ∨ Kw
C ,P (accepted)) →

[refuse(C, P )]⊥)
2(¬KC,P (Pu) → [end Pu(C, P )]⊥)

For instance, actionrequest(C, P ) cannot be executed if it is not
known that the protocol has been started or if it is known that the
request has already been achieved (to avoid repeating the action).

3.3 Protocols and their runs

A protocol is specified by giving a domain description, defined as
follows:

Definition 1 A domain descriptionD is a pair (Π, C) where

• Π is the set of the action and causal laws containing:

– the laws describing the effects of each communicative actions
on the social state;

– the causal laws defining the commitment rules.

• C = Init ∧∧
i
(Permi ∧ Comi) is the conjunction of the con-

straints on the initial state of the protocol and the permissions
Permi and the commitmentsComi of all the agentsi.

Given a domain descriptionD, we denote byComp(D), the com-
pleted domain description, the set of formulas:

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi))



Definition 2 Given the specification of a protocol by a domain de-
scriptionD, the runs of the system according the protocol are exactly
the models ofComp(D).

Note that protocol “runs” are always finite, while the logic DLTL
is characterized by infinite models.To take this into account, we as-
sume that each domain description of a protocol will be suitably ex-
tended with an actionnoop which does nothing and which can be
executed only after termination of the protocol, so as to allow a com-
putation to go on forever after termination of the protocol.

Note that the domain description specifying a protocol contains
information related to the semantics of the actions, and information
related to the “control” of the protocol, i.e. the allowed sequences
of actions. For instance, the precondition rule of actionoffer(P ,C )
specifies both that this action needs a request to be executed, and that
it can be executed only once in the protocol. The latter precondition
depends on the protocol rather than on the semantics of the action.

In the logic DLTL the control of arigid protocol like this one could
be easily represented by means of a regular program. In our example
we might define the following regular programπ:

begin Pu(C, P ); request(C, P );
((offer(P ,C ); (accept(C ,P) + refuse(C ,P))) +
not avail(P ,C ));

end Pu(C ,P)

and add a constraint〈π〉> requiring that each model must begin with
an execution ofπ. However in this paper we do not use this formula-
tion because it has the drawbacks that it requires the use of the prod-
uct version of the temporal logic [9] to deal with the composition of
protocols.

Once the interface of a service has been defined by specifying its
protocol, several kinds of verification can be performed on it as, for
instance, the verification of services compliance with the protocol at
runtime, the verification of properties of the protocol and the verifi-
cation that a given implemented service, whose behavior is known,
is compliant with the protocol.

The verification that the interaction protocol has the propertyϕ
amounts to show that the formula

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi)) → ϕ, (5)

is valid, that is that all the admitted runs have the propertyϕ.
Verifying that the a set services are compliant with a given interac-

tion protocol at runtime, given the historyτ = a1, . . . , an describing
the interactions of the services, amounts to check if there is a run of
the protocol containing that sequence of communications. This can
be done by verifying the satisfiability of the formula

(Comp(Π)∧Init∧
∧

i

(Permi∧Comi))∧ < a1; a2; . . . ; an > >

wherei ranges on all the services involved in the protocol.
Finally, the problem of verifying that a service, whose actual be-

havior is given, is compliant with a given interaction protocol, can be
modelled as a validity problem, assuming that the abstract descrip-
tion of the service can be given by means of a regular program. For
an example and the detailed description of this verification task we
refer to [7].

3.4 Reasoning about protocols using automata

Verification and satisfiability problems can be solved by extend-
ing the standard approach for verification of Linear Time Temporal

Logic, based on the use of Büchi automata. We recall that aBüchi au-
tomatonhas the same structure as a traditional finite state automaton,
with the difference that it accepts infinite words. More precisely a
Büchi automaton over an alphabetΣ is a tupleB = (Q,→, Qin, F )
where:

• Q is a finite nonempty set of states;
• →⊆ Q× Σ×Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run ofB overσ is a mapρ : prf(σ) → Q such
that:

• ρ(ε) ∈ Qin

• ρ(τ)
a→ ρ(τa) for eachτa ∈ prf(σ)

The runρ is acceptingiff inf(ρ)∩F 6= ∅, whereinf(ρ) ⊆ Q is given
by q ∈ inf(ρ) iff ρ(τ) = q for infinitely manyτ ∈ prf(σ).

As described in [12], the satisfiability problem for DLTL can be
solved in deterministic exponential time, as for LTL, by constructing
for each formulaα ∈ DLTL(Σ) a Büchi automatonBα such that
the language ofω-words accepted byBα is non-empty if and only if
α is satisfiable.

A more efficient approach for constructing a Büchi automaton
from a DLTL formula making use of a tableau-based algorithm has
been proposed in [6]. Given a formulaϕ, the algorithm builds a graph
G(ϕ) whose nodes are labelled by sets of formulas. States and tran-
sitions of the B̈uchi automaton correspond to nodes and arcs of the
graph. As for LTL, the number of states of the automaton is, in the
worst case, exponential in the size if the input formula, but in practice
it is much smaller.

Since the nodes of the graphG(ϕ) are labeled by sets of formu-
las, what we actually obtain by the construction is a labeled Büchi
automaton, which can be defined by adding to the above definition a
labeling functionL : S → 2Lit, whereLit is the set of all epistemic
literals. It is easy to obtain from an accepting run of the automaton
a set of models of the given formula. It is sufficient to complete the
label of each state in a consistent way.

The validity of a formulaα can be verified by constructing the
Büchi automatonB¬α for ¬α: if the language accepted byB¬α is
empty, thenα is valid, whereas any infinite word accepted byB¬α

provides a counterexample to the validity ofα.
For instance, given a completed domain description

(Comp(Π) ∧ Init ∧∧
i
(Permi ∧ Comi))

specifying a protocol, we can construct the corresponding labeled
Büchi automaton, such that all runs accepted by the automaton rep-
resent runs of the protocol.

We will show now how we can take advantage of the structure of
the problems considered in this paper to optimize the construction of
the Büchi automaton. We can partition the above domain description
into two formulas

α = (Comp(Π) ∧ Init ∧∧
i
Permi)

β =
∧

i
Comi

whereα contains the description of the initial state, preconditions
and effects of the actions, andβ contains temporal formulas specify-
ing commitment fulfillment.

The Büchi automaton for the whole formula can be constructed by
building the two B̈uchi automata corresponding toα andβ and by
making their synchronous product. The Büchi automaton forβ can



be constructed with the general algorithm mentioned above. Instead,
the Büchi automaton corresponding toα can be easily obtained by
means of a more efficient technique, exploiting the fact that in our
action theory we assume to have complete states and deterministic
actions. In fact, we can obtain from the domain description a function
next statea(S), for each actiona, for transforming a state to the
next one, and then build the automaton by repeatedly applying these
functions to all states where the preconditions of the action hold,
starting from the initial state.

The approach we have described here is similar to themodel
checkingtechniques which are used to prove properties of programs.
For this reason we will sometimes callmodel automatonthe automa-
ton obtained fromα. The main difference however is that in the stan-
dard model checking approach, the model is given as a transition sys-
tem and only the properties to be proved are expressed in a temporal
logic. Here instead we use a uniform language to express both the
action theory and its properties, and the construction outlined above
is just an optimization of the general algorithm for obtaining an au-
tomaton from a temporal formula. An advantage of this approach is
that we can specify a protocol by mixing action rules and precondi-
tions with temporal properties such as the commitment rules.

4 Composing protocols

Assume now that we have a serviceShfor shipping goods, and that
the customer wants to reason on the composition of the producer
service of the previous section and of this service. For simplicity we
assume that the protocol of the shipping service is the same as that
of producer service. To distinguish the two protocols we will add
the suffixPu or Shto their actions and fluents, while the role of the
shipper will be denoted byS. TheShprotocol rules the interactions
between a customerC and a shipperS.

The domain descriptionDPS of the composed service can be ob-
tained by taking the union of the sets of formulas specifying the two
protocols:DPS = DPu ∪ DSh. Since we want to reason from the
side of the customer, we will replace the epistemic operatorsKC,P

andKC,S with KC , representing the knowledge of the customer.
Thus the runs of the composed servicePS are given by the inter-
leaving of all runs of the two protocols.

The aim of the customer is to extract from the domain description
of PS a plan allowing it to interact with the two services. The goal
of the plan will be specified by means of a set of constraintsCon-
str which will take into account the properties of the composed ser-
vice. For instance, the customer cannot request an offer to the ship-
ping service until it has not received an offer from the producer. This
can be easily expressed by adding a new precondition to the action
request Sh(C, S):

2(¬KC(offered Pu) → [request Sh(C ,S)]⊥)
Other constraint cannot be easily expressed by means of precon-

ditions, since they involve more “global” properties of a run. For
instance we expect that the customer cannot accept only one of the
offers of the two services. This property can be expressed by the fol-
lowing formula

3〈accept Pu(C, P )〉 ↔ 3〈accept Sh(C, S)〉
stating that the customer must accept both offers or none of them.

Then, the specification of the interaction protocol of the composed
service is given byDPS∪Constr, from which the customer will ex-
tract the plan. To do this, however, we must first discuss an important
aspect of the protocol, i.e. the different kinds ofnondeterminismin-
volved.

We assume that, if a protocol contains a point of choice among dif-
ferent communicative actions, the sender of these actions can choose
freely which one to execute, and, on the other hand, the receiver can-
not make any assumption on which of the actions it will receive.
Therefore, from the viewpoint of the receiver, that point of choice
is a point of nondeterminism to care about. For instance, the cus-
tomer cannot know whether the servicePu will reply with offer Pu
or not avail Pu after receiving the request. Therefore the customer
cannot simply reason an a single choice of action, but he will have
to consider all possible choices of the two services, thus obtaining
alternative runs, corresponding to aconditional plan. On the other
hand, the customer has not to care about his own choices.

An example of conditional plan is the following7

beginPu; requestPu;
(offer Pu; beginprotocol Sh; requestSh;

(offer Sh; acceptPu; acceptSh; endPu; endSh +
not avail Sh; refusePu; endPu; endSh)) +

(not avail Pu; endPu)

This plan is represented as a regular program, where, in particular,
“+” is the choice operator.

The first step for obtaining aconditional planconsists in building
the Büchi automaton obtained from the domain descriptionDPS and
the constraintsConstr. As we want to reason about the executions of
the protocol satisfying the constraints, from the composed domain
descriptionDPS we can compute thenext state function defining
the state transitions of the model automaton of the composed proto-
col. The synchronous product of such an automaton with the Büchi
automatonBConstr for the constraint formulaConstr(which also in-
cludes the fulfilment constraints

∧
i
Comi) is then computed. This

product can either be done on the fly while building the model au-
tomaton or it can be done after the model automata has been com-
pletely built.

While performing the product operation a special attention has to
be devoted to avoid cutting out actions which can be received by the
customer (such asoffer Shandnot avail Sh) which, though allowed
by the protocol, might not satisfy the constraints. In fact, since we are
using a linear time temporal logic, the constraints inConstrcan only
express properties dealing with a single run. For instance, the run
beginPu; requestPu; offer Pu; acceptPu; beginSh; requestSh;
offer Sh; acceptSh; endPu; endSh is correct with respect to the
above constraints, since both offers are accepted. However, assume
that the customer chooses to execute this plan, and, after executing
actionrequestSh, the shipping service replies withnot avail Sh. At
this point there is no other way of continuing the execution, since
the customer has already accepted the offer by the producer, while it
should have refused it.

If in a states of the model automaton a set of “receive” actions are
possible, all the statess′ which are obtained froms in the product
automaton must satisfy the condition that all the “receive” actions
possible ins are also possible ins′. If this happens to be false due
to missing transitions in the constraint automaton, the resulting state
in the product automaton is kept to be a dangling state (a state with
no outgoing edges). The intuition is that such a state represents a
failure state as it cannot deal with all the possible “receive” actions
occurring in the corresponding state of the protocol.

To take this into account, we will mark as AND states those
states of the model automaton whose outgoing arcs are labeled with
actions whose sender is one of the services, such asoffer Pu or

7 We omit sender and receiver of communicative actions.



not avail Pu8. A conditional plan can then be obtained by search-
ing the product automaton with a forward-chaining algorithm which
considers all AND states as branching points of the plan.

The complexity of this algorithm depends on the way it is im-
plemented, in particular on the possibility of keeping in memory all
states of the product automaton. If the algorithm does not remem-
ber the states it visits, except for those on the search stack, then the
complexity will be exponential in the size of the automaton.

On the other hand, if the product automaton is given, the search for
the conditional plan can be done by making use of faster algorithms,
so that the problem of finding a conditional plan can be solved in
polynomial time in the size of the graph. In fact a depth-first search
algorithm can try to build the conditional plan by visiting the graph
without expanding again a node which has already been visited. For
the application under consideration, the problem is further simplified
by the fact that web services are always assumed to terminate, and
thus accepting runs always contain finite sequences of actions differ-
ent from thenoop action, followed by a sequence ofnoop actions
ending in an acceptance cycle.

In the case the complete product automaton is given, we might
adopt a different approach to the construction of a conditional plan,
consisting in “pruning” once for all the automaton by removing all
arcs which do not lead to an accepting state, and all AND states for
which there is some outgoing arc not leading to an accepting state.
This can be achieved by starting from the accepting states, and by
propagating backwards the information on the states for which a so-
lution exists.

In this way we are guaranteed that, if there is a run
σ1; offer Sh; σ2 , whereσ1 andσ2 are sequences of actions, there
must also be a runσ1; not avail Sh; σ3, for some sequence of ac-
tionsσ3. Therefore the customer can execute the first partσ1 of the
run, being sure that it will be able to continue with runσ3 if the ship-
ping service replies withnot avail Sh. In other words, the customer
will be able to act by first extracting a linear plan, and begin execut-
ing it. If, at some step, one of the services executes an action different
from the one contained in the plan, the customer can build a new plan
originating from the current state, and restart executing it.

In the construction of the conditional plan, we have taken into ac-
count only the nondeterministic actions of the two services. However
there are some choices regarding the actions of the customer, such
as acceptPu or refusePu, that cannot be made at planning time.
These nondeterministic choices can also be considered in a condi-
tional plan. In our example we might have the following conditional
plan

beginPu; requestPu;
(offer Pu; beginprotocol Sh; requestSh;

(offer Sh;
(acceptPu; acceptSh; endPu; endSh +
refusePu; refuseSh; endPu; endSh) +

not avail Sh; refusePu; endPu; endSh)) +
(not avail Pu; endPu)

Note that, in the case of nondeterministic actions of the customer,
we are not imposing all choices to be present in the conditional plan,
as we did for the actions of the other participants, because some
choices might not be possible due to the constraints. For instance,
afteracceptPu the customer must necessarily executeaccept Sh.

Up to now the kind of reasoning performed on composed proto-
cols has taken into account only the “public” actions, i.e. the com-

8 For simplicity, we assume that there is no state whose outgoing arcs are
labeled with actions sent and received by the same agent.

municative actions of the component protocols. However, in general,
the customer should be able to use “private” actions to reason about
the information received from the services and to decide what ac-
tion to execute. Since the information sent by the services will be
available only at runtime, such an action should be considered as a
nondeterministic action at planning time. We might easily extend our
approach to this case by extending the specification of the composed
services with “private” actions and fluents of the customer.

The approach described in this section can be applied to the more
general problem of building a new service that is able to interact
directly with the customer through a suitable protocol [19]. The first
step is to put together the three protocols describing the interactions
with the two services and with the customer. The next step is to add
suitable constraints similar to the ones given above. For instance we
may state that the offer of each of the two services can be accepted if
and only if the customer accepts them:

(3〈accept Pu〉 ↔ 3〈accept Cu〉) ∧
(3〈accept Sh〉 ↔ 3〈accept Cu〉)

where the suffixCu refers to the interaction protocol of the customer.
We can then proceed as before by building the Büchi automaton

from the composed protocol and extracting from it a conditional plan.
This plan can be considered as a specification of the (abstract) behav-
ior of the new service.

As a final remark, a different problem that can be tackled in this
formalism, if the specification of the new service is given, is that of
verifying that the new service can indeed be obtained by composing
the component services. This requires to verify that, in every run sat-
isfying the action specification as well as the new protocol specifica-
tion, all the permissions and commitments of the component services
are satisfied. This kind of verification requires a validity check. We
omit the detailed specification of this task for lack of space.

5 Conclusions and related work

In this paper we have presented an approach for the specification and
verification of interaction protocols in a temporal logic (DLTL). Our
approach provides a unified framework for describing different as-
pects of multi-agent systems. Programs can be expressed as regular
expressions, (communicative) actions can be specified by means of
action and precondition laws, social facts can be specified by means
of commitments whose dynamics is ruled by causal laws, and tem-
poral properties can be expressed by means of temporal formulas.
To deal with incomplete information, we have introduced epistemic
modalities in the language, to distinguish what is known about the
social state from what is unknown.

Various verification problems can be formalized as satisfiability
and validity problems in DLTL, and they can be solved by developing
automata-based model checking techniques.

Our proposal is based on a social approach to agent communi-
cation, which allows a high level specification of the protocol and
does not require a rigid specification of the correct action sequences.
For this reason the approach appears to be well suited for protocol
composition, and, in particular, to reason about composition of web
services. As a first step in this direction, in [8] we have addressed
the problem of combining two protocols to define a new more spe-
cialized protocol. Here we have shown that service composition can
be modeled by taking the formulas giving the domain descriptions
of the services, by adding to them suitable temporal constraints, and
translating the set of formulas into a Büchi automaton from which a
(conditional) plan can be obtained.



The proposal of representing states as sets of epistemic fluent lit-
erals is based on [1], which presents a modal approach for reasoning
about dynamic domains in a logic programming setting. A similar
“knowledge-based” approach has been used to define the PKS plan-
ner, allowing to plan under conditions of incomplete knowledge and
sensing [16]. PKS generalizes the STRIPS approach, by representing
a state as a set of databases that model the agent’s knowledge, and
action effects as updates to these databases.

The problem of the automated composition of web services by
planning at the “knowledge level” is addressed in [18]. Web services
are described in standard process modeling and execution languages,
like BPEL4WS, and then automatically translated into a planning do-
main that models the interactions among services at the knowledge
level. The planning technique [19] consists in the following steps.
First construct a parallelstate transition systemthat combines the
given services in a planning domain. The next step consists in for-
malizing the requirements for the composite service as a goal in a
specific language which allows to express extended goals [3]. Finally
the planner generates a plan that is translated into a state transition
system and into a concreteBPEL4WS process. The planning problem
is solved by making use of the state of the art planner MBP.

The approach to web service composition presented in this paper
has analogies with the one presented in [18], in particular with re-
spect to the sequence of steps performed to build the plan. As we
have already pointed out, our approach based on DLTL provides a
framework, where different aspects such as action theories, proto-
cols and their properties can be expressed in a uniform way as DLTL
formulas. A further advantage is that DLTL formulas can be trans-
lated into B̈uchi automata, from which it is easy to extract runs and
plans.

In [2] the problem of automatic service composition is addressed
assuming that a set of available services (whose behavior is repre-
sented by finite state transition systems) is given together with a pos-
sibly incomplete specification of the sequences of actions that the
client would like to realize. The problem of checking the existence
of a composition is reduced to the problem of checking the satisfiabil-
ity of a PDL formula. This provides an EXPTIME complexity upper
bound. As a difference with [2], in our approach client requirements
are specified by providing a set of conditions that the target service
must satisfy. The composition problem considered in [2] is a gener-
alization of the verification problem we have addressed at the end of
section 4 to the case when the protocol of the target service is under-
specified and the component e-services that will provide the services
required by the client are not known. The extension of our approach
to deal with underspecified specifications of the target service will be
subject of further investigation.
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