
An Event-Condition-Action Logic Programming
Language ?

J. J. Alferes1, F. Banti1, and A. Brogi2

1 CENTRIA, Universidade Nova de Lisboa, Portugal,
jja |banti@di.fct.unl.pt

2 Dipartimento di Informatica, Università di Pisa, Italy,
brogi@di.unipi.it

Abstract. Event-Condition-Action (ECA) languages are an intuitive and power-
ful paradigm for programming reactive systems. Usually, important features for
an ECA language are reactive and reasoning capabilities, the possibility to ex-
press complex actions and events, and a declarative semantics. In this paper, we
introduce ERA, an ECA language based on, and extending the framework of logic
programs updates that, together with these features, also exhibits capabilities to
integrate external updates and perform self updates to its knowledge (data and
classical rules) and behaviour (reactive rules).

1 Introduction
Event Condition Action (ECA) languages are an intuitive and powerful paradigm for
programming reactive systems. The fundamental construct of ECA languages are re-
active rules of the form On Event If Condition Do Action which mean: when
Event occurs, if Condition is verified, then execute Action. ECA systems receive
inputs (mainly in the form of events) from the external environment and react by per-
forming actions that change the stored information (internal actions) or influence the
environment itself (external actions). There are many potential and existing areas of
applications for ECA languages such as active and distributed database systems [26,
6], Semantic Web applications [21, 24], distributed systems [13], Real-Time Enterprize
and Business Activity Management and agents [11].

To be useful in a wide spectrum of applications an ECA language has to satisfy sev-
eral properties. First of all, events occurring in a reactive rule can be complex, resulting
from the occurrence of several basic ones. A widely used way for defining complex
events is to rely on some event algebra [10, 1], i.e. to introduce operators that define
complex events as the result of compositions of more basic ones that occur at the same
or at different instants. Actions that are triggered by reactive rules may also be complex
operations involving several (basic) actions that have to be performed concurrently or in
a given order and under certain conditions. The possibility to define events and actions
in a compositional way (in terms of sub-events and sub-actions), permits a simpler and
more elegant programming style by breaking complex definitions into simpler ones and
by allowing to use the definition of the same entity in different fragments of code.
? This work has been partly funded by the European Commission under project Rewerse

(http://rewerse.net). Thanks are due to Wolfgang May for his comments on previous versions.

An ECA language would also benefit from a declarative semantics taking advantage
of the simplicity of its the basic concepts. Moreover, an ECA language must in general
be coupled with a knowledge base, which, in our opinion, should be richer than a simple
set of facts, and allow for the specification of both relational data and classical rules, i.e.
rules that specify knowledge about the environment, besides the ECA rules that specify
reactions to events. Together with the richer knowledge base, an ECA language should
exhibit inference capabilities in order to extract knowledge from such data and rules.

Clearly ECA languages deal with systems that evolve. However, in existing ECA
languages this evolution is mostly limited to the evolution of the (extensional) knowl-
edge base. But in a truly evolving system, that is able to adapt to changes in the con-
sidered domain, there can be evolution of more than the extensional knowledge base:
derivation rules of the knowledge base (intensional knowledge), as well as the reactive
rules themselves may change over time. We believe another capability that should be
considered is that of evolving in this broader sense. Here, by evolving capability we
mean that a program should be able to automatically integrate external updates and
to autonomously perform self updates. The language should allow updates of both the
knowledge (data and classical rules) and the behaviour (reactive rules) of the considered
ECA program, due to external and internal changes.

To the best of our knowledge no existing ECA language provides all the above men-
tioned features (for a detailed discussion see section 5). In particular, none provides the
evolving capability, nor it is immediately clear how to incorporate such capability to
these languages. The purpose of this paper is to define an ECA language based on
logic programming that satisfies all these features. Logic programming (LP) is a flex-
ible and widely studied paradigm for knowledge representation and reasoning based
on rules. In the last years, in the area of LP, an amount of effort has been deployed to
provide a meaning to updates of logic programs by other logic programs. The output of
this research are frameworks that provide meaning to sequence of logic programs, also
called Dynamic Logic Programs (DyLPs) [2, 17, 5, 12], and update languages [3, 12, 17,
4] that conjugate a declarative semantics and reasoning capabilities with the possibility
to specify (self) evolutions of the program. However, unlike ECA paradigms, these lan-
guages do not provide mechanisms for specifying the execution of external actions nor
do they provide mechanism for specifying complex events or actions.

To overcome the limitations of both ECA and LP update languages, we present
here an ECA language, defined by starting from DyLPs, called ERA (after Evolving
Reactive Algebraic programs). This language builds on previous work on the update
language Evolp [3], inheriting from it the evolving capabilities, and extending it with
the possibility of defining and dealing with complex events and actions, and also con-
sidering external actions. The semantics of ERA is defined by means of an inference
system (specifying what conclusions are derived by a program) and of an operational
semantics (specifying the effects of actions). The former is derived from the refined se-
mantics for DyLPs [2]. The latter is defined by a transition system inspired by existing
work on process algebras. [22, 15].

The rest of the paper is structured as follows: we start in section 2 with an infor-
mal introduction to the language introducing its constructs and highlighting its main
features. In section 3 we briefly introduce the syntax and semantics of DyLPs, and

establish general notation. Section 4 is dedicated to the definition of the syntax and se-
mantics of ERA. The main goals of the paper are the motivation for the language and its
formal definition. A study of its properties and formal relation to other systems, cannot
be presented here for lack of space. We nevertheless present some comparisons with
related work in section 5, where we also draw conclusions and sketch future work.

2 Outline of the language
Before the formal definition of ERA, which is given in section 4, we start here by infor-
mally introducing the various constructs of the language. As stated in the introduction,
we aim at defining a language exhibiting both the advantages of ECA languages (with
reactive rules, complex events and actions) and of LP updates (with inference rules,
possibility of declaratively specifying self-updates). As such, expressions in an ERA
program are divided in rules (themselves divided into active, inference and inhibition
rules) and definitions (themselves divided into event and action definitions).

Reactive rules are as usual in ECA languages, and have the form (1), where: Event
is a basic or a complex event expressed in an algebra similar to the Snoop algebra [1];
Condition is a conjunction of (positive or negative) literals and Action is a basic or
a complex action. Inference rules are LP rules with default negation, where default
negated heads are allowed [19]. Finally, ERA also includes inhibition rules of the form:

When B Do not Action

where B is a conjunction of literals and events. Such an expression intuitively means:
when B is true, do not execute Action. Inhibition rules are useful for updating the
behaviour of reactive rules. If the inhibition rule above is asserted all the rules with
Action in the head are updated with the extra condition that B must not be satisfied in
order to execute Action.

ERA allows to combine basic events to obtain complex ones by an event algebra.
The operators we use are:4 | 5 | A | not . Intuitively, e14 e2 occurs at an instant i iff
both e1 and e2 occur at i; e1 5 e2 occurs at instant i iff either e1 or e2 occur at instant
i; not e occurs at instant i iff e does not occur i. A(e1, e2, e3) occurs at the same instant
of e3, in case e1 occurred before, and e2 in the middle. This operator is very important
since it allows to combine (and reason with) events occurring at different time points.

Actions can also be basic or complex, and they may affect both the stored knowl-
edge (internal actions) or the external environment. Basic external actions are related
to the specific application of the language. Basic internal actions are for adding or re-
tracting facts and rules (inference, reactive or inhibition rules), of the form assert(τ)
and retract(τ) respectively, for raising basic events, of the form raise(e). There is
also an internal action define(d) for adding new definitions of actions and events (see
more on these definitions below). Complex actions are obtained by applying algebraic
operators on basic actions. Such operators are: .| ‖ | IF , the first for executing actions
sequentially, and the second for executing them concurrently. Executing IF (C, a1, a2)
amounts to execute a1 in case C is true, or to execute a2 otherwise.

For allowing for modularity on the definition of both complex actions and events,
ERA allows for event and action definition expressions. These are of the form, respec-
tively, edef is e and adef is a where edef (resp. adef) is an atom representing a new
event and e (resp. a) is an event (resp. an action) obtained by the event (resp. action)

algebra above. It is also possible to use defined events (resp. actions) in the definition
of other events (resp. actions).

To better motivate and illustrate these various constructs of the language ERA, in-
cluding how they concur with the features mentioned in the introduction, we present
now an example from the domain of monitoring systems.

Example 1. Consider an (ECA) system for managing electronic devices in a building,
viz. the phone lines and the fire security system. The system receives inputs such as
signals of sensors and messages from employees and administrators, and can activate
devices like electric doors or fireplugs, redirect phone calls and send emails. Sensors
alert the system whenever an abnormal quantity of smoke is found. If a (basic) event
(alE(S))1, signaling a warning from sensor S occurs, the system opens all the fireplugs
Pl in the floor Fl where S is located. This behaviour is encoded by the reactive rule

On alE(S) If flr(S, F l), firepl(Pl), f lr(Pl, F l) Do openA(Pl)

The situation is different when the signals are given by several sensors. If two signals
from sensors located in different rooms occur without a stop alertE event occurring
in the meanwhile, the system starts the complex action fire alarmA, which applies a
security protocol: All the doors are unlocked (by the basic action opendoorsA) to allow
people to leave the building; At the same time, a phone call is sent to a firemen station
(by the action firecallA); Then the system cuts the electricity in the building (by action
turnA(elect, off)). opendoorsA and firecallA can be executed simultaneously, but
turnA(elect, off) has to be executed after the electric doors have been opened. This
behaviour is encoded by following definitions and rules

alert2E(S1, S2) is A(alE(S1), alE(S2), stop alertE)5 (alE(S1)4 alE(S2)).
fire alarmA is (opendoorsA . turnA(elect, off))||firecallA.
On alert2E(S1, S2) If not same room(S1, S2) Do fire alarmA.
same room(S1, S2)← room(S1, R1), room(S2, R1).

The last rule is already a simple example of an inference rule. For another example,
suppose that we want to allow the system to be able to notify (by email) all members of
a working group in some particular situation. Moreover suppose that working groups are
hierarchically defined. Representing in ERA that if an employee belongs to a subgroup
she also belongs to its supergroups, can be done by the inference rule2:

ingroup(Emp,G)← ingroup(Emp, S), sub(S, G)

We provide now an example of evolution. Suppose the administrators decide to update
the behaviour of the system such that from then onwards, when a sensor S raises an
alarm, only the fireplugs in the room R where S is located is opened. Moreover, each
employee can from then onwards command the system to start redirecting phone calls to
him (and to stop the previous behaviour of the systems regarding indirections, whatever
they were. This behaviour is obtained by updating the system, asserting the following
rules and definitions:

1 In the sequel, we use names of atoms ending in E to represent events, and ending in A to
represent actions.

2 The rules above uses recursion, on the predicate ingroup/2, a feature that is beyond the ca-
pabilities of many ECA commercial systems, like e.g. SQL-triggers [26].

R1 : When alE(S), room(S, R), not room(Pl,R) Do not openA(Pl).
R2 : On redirectE(Emp,Num) If true Do redirectA(Emp,Num).
R3 : On stop redirectE(Emp,Num) If true Do stop redirectA(Emp).
d1 : redirectA(Emp,Num) is assert(τ1) . assert(τ2).
d2 : stop redirectA(Emp,Num) is retract(τ1)‖retract(τ2).

where τ1 and τ2 are the following rules:

τ1 : When phonE(Call), dest(Call, Emp) Do not forwA(Call,N).
τ2 : On p honE(Call) If dest(Call, Emp) Do forwA(Call,Num).

The formal details of how to update an ERA system are given in section 4.2. Here,
when R1 is asserted, if alE(S) occurs in room R, any fire plug Pl which is not in R
is not opened, even if Pl and S are on the same floor. Reactive rules R2-R3 encode
the new behaviour of the system when an employee Emp commands the system to
start (resp. to stop) redirecting to the phone number Num any phone call Call to him.
This is achieved by sequentially asserting (resp. retracting) rules τ1, τ2. The former is
an inhibition rule that inhibits any previous rule reacting to a phone call for Emp (i.e.
to the occurrence of event phonE(Call)) by forwarding the call to a number N . The
latter is a reactive rule forwarding the call to number Num. Note that τ1, τ2 have to
be asserted sequentially in order to prevent mutual conflicts. To revert to the previous
behaviour it is sufficient to retract τ1, τ2 as done by action stop redirectA.

Such (evolution) changes could alternatively be done by handily modifying the pre-
vious rules ie, by retracting them and then asserting new rules. As with LP updates, also
ERA offers the possibility to update reactive rules instead of rewriting. This possibility
offered by ERA can be very useful in large systems developed and modified by several
programmers and administrators, especially if updates are performed by users that are
not aware of the existing rules governing the system, as in the previous example.

Having informally introduced the language, it is now time to start formalizing it.
Before that some background on LP updates and notation is required.

3 Background and Notation

In what follows, we use the standard LP notation and, for the knowledge base, general-
ized logic programs (GLP) [19]. Arguments of predicates (here also called atoms) are
enclosed within parentheses and separated by commas. Names of arguments with capi-
talized initials stand for variables, names with uncapitalized initials stand for constants.

A GLP over an alphabet (a set of propositional atoms) L is a set of rules of the form
L← B, where L (called the head of the rule) is a literal over L, and B (called the body
of the rule) is a set of literals over L. As usual, a literal over L is either an atom A of L
or the negation of an atom not A. In the sequel we also use the symbol not to denote
complementary default literals, i.e. if L = not A, by not L we denote the atom A.

A (two-valued) interpretation I over L is any set of literals in L such that, for each
atom A, either A ∈ I or not A ∈ I . A set of literals S is true in an interpretation I (or
that I satisfies S) iff S ⊆ I . In this paper we will use programs containing variables.
As usual in these cases a program with variables stands for the propositional program

obtained as the set of all possible ground instantiations of its rules. Two rules τ and η
are conflicting (denoted by τ ./ η) iff the head of τ is the atom A and the head of η is
not A, or vice versa.

A Dynamic Logic Program P over an alphabet L is a sequence P1, . . . , Pm where
the Pis are GLPs defined over L. Given a DyLP P1 . . . Pn and a set of rules R we
denote by P \R the sequence P1 \R, . . . , Pn \R where Pi \R is the program obtained
by removing all the rules in R from Pi. The refined stable model semantics of a DyLP,
defined in [2], assigns to each sequence P a set of refined models (that is proven there to
coincide with the set of stable models when the sequence is formed by a single normal
or generalized program [19]). The rationale for the definition of a refined model M of
a DyLP is made according with the causal rejection principle [12, 17]: If the body of a
rule in a given update is true in M , then that rule rejects all rules in previous updates
that are conflicting with it. Such rejected rules are ignored in the computation of the
stable model. In the refined semantics for DyLPs a rule may also reject conflicting rules
that belong to the same update. Formally the set of rejected rules of a DyLP P given an
interpretation M is: RejS(P,M) = {τ ∈ Pi : ∃ η ∈ Pj i ≤ j, τ ./ η ∧ B(η) ⊆M}.

An atom A is false by default if there is no rule, in none of the programs in the DyLP,
with head A and a true body in the interpretation M . Formally: Default(P,M) =
{not A : 6 ∃ A← B ∈

⋃
Pi ∧B ⊆M}. If P is clear from the context, we omit it as

first argument of the above functions.

Definition 1. Let P be a DyLP over the alphabet L and M an interpretation. M
is a refined stable model of P iff M = least

((⋃
Pi \RejS(M)

)
∪Default(M)

)
,

where least(P) denotes the least Herbrand model of the definite program obtained by
considering each negative literal not A in P as a new atom.

In the following, a conclusion over an alphabet L is any set of literals over L. An
inference relation ` is a relation between a DyLP and a conclusion. Given a DyLP P
with a unique refined model M and a conclusion B, it is natural to define an inference
relation ` as follows: PS ` B ⇔ B ⊆M (B is derived iff B is a subset of the unique
refined model). However, in the general case of programs with several refined models,
there could be several reasonable ways to define such a relation. A possible choice is to
derive a conclusion B iff B is a subset of the intersection of all the refined models of the
considered program ie, PS ` B ⇔ B ⊆M ∀M ∈ M(P) whereM(P) is the set of
all refined models of P . This choice is called cautious reasoning. Another possibility is
to select one model M (by a selecting function Se) and to derive all the conclusions that
are subsets of that model ie, P ` B ⇔ B ⊆ Se(M(P)). This choice is called brave
reasoning. In the following, in the context of DyLPs, whenever an inference relation `
is mentioned , we assume that ` is one of the relations defined above.

Let ES be a sequence of programs (ie, a DyLP) and Ei a GLP, by Ei.ES we denote
the sequence with head Ei and tail ES . If ES has length n, by ES ..En+1 we denote
the sequence whose first nth elements are those of ES and whose (n + 1)th element
is En+1. For simplicity, we use the notation Ei.Ei+1.ES and ES ..Ei..Ei+1 in place of
Ei.(Ei+1.ES) and (ES ..Ei)..Ei+1 whenever this creates no confusion. Symbol null
denotes the empty sequence. Let ES be a sequence of n GLPs and i ≤ n a natural
number, by Ei

S we denote the sequence of the first ith elements of ES . Let P = P ′..Pi

be a DyLP and Ei a GLP, by P] Ei we denote the DyLP P ′..(Pi ∪ Ei).

4 Formal definition of ERA

4.1 Syntax of ERA programs

We start the formal presentation of ERA by defining the syntax introduced in section 2.

Definition 2. Let L, EB , Edef , AX and Adef be sets of atoms respectively called: con-
dition alphabet, set of basic events, of event names, of external actions, and of action
names. Let L, eb, edef , ax and adef be generic elements of, respectively, L, EB , Edef ,
AX and Adef . The set of positive events E over EB , and Edef is the set of atoms ep of
the form:

ep ::= eb | e1 4 e2 | e1 5 e2 | A(e1, e2, e3) | edef

where e1, e2, e3 are generic elements of E . An event over E is any literal over E . A
negative event over E is any literal of the form not ep.

A basic action ab over E ,L, AX ,Adef is any atom of the form:
ab ::= ax | raise(eb) | assert(τ) | retract(τ) | define(d)

where τ (resp. d) is any ERA rule (resp. definition) over LERA.
The set of actions A over E , C, AX ,Adef is the set of atoms a of the form:

a ::= ab | a1 . a2 | a1‖a2 | IF (C, a1, a2) | adef

where a1 and a2 are arbitrary elements of A and C is any literal over E ∪ L.
The ERA alphabet LERA over L, EB , Edef , AX and Adef is the triple E ,L,A. Let

e and a be arbitrary elements of, respectively, E andA, B any set of literals over E ∪L
and Cond any set of literals over L. An ERA expression is either an ERA definition or
an ERA rule. An ERA definition is either an event definition or and action definition. An
event definition over LERA is any expression of the form edef is e. An action definition
over LERA is any expression of the form adef is a. An ERA rule is either an inference,
active or inhibition rule over LERA. An inference rule over LERA is any rule of the
form L ← B. A reactive rule over LERA is any rule of the form On e If Cond Do a.
An inhibition rule over LERA is any rule of the form When B Do not a. An ERA
program over LERA is any set of ERA expressions over LERA.
As in DyLPs, ERA considers sequences of programs, each representing an update (with
asserted rules or definitions) of the previous ones. Such a sequence is called an ERA
dynamic program, and determines, at each instant, the behaviour of the system. For this
reason the semantics of ERA is given by ERA dynamic programs.

4.2 ERA Systems
The defined syntax allows to program reactive systems, hereafter called ERA systems.
An ERA system has, at each moment, an ERA dynamic program describing and deter-
mining its behaviour, receives input (called input program) from the outside, and acts.
The actions determine both the evolution of the system (by e.g. adding a new ERA pro-
gram to the running sequence) and the execution in the external environment. Formally,
an input program Ei, over an alphabet LERA, is any set of either ERA expressions over
LERA or facts of the form eb where eb is an element of EB (i.e. a basic event). At any
instant i, an ERA systems receives a, possibly empty, input program3 Ei. The sequence

3 ERA adopts a discrete concept of time, any input program is indexed by a natural number
representing the instant at which the input program occurs.

of programs E1, . . . En denotes the sequence of input programs received at instants
1, . . . , n. A basic event eb occurs at instant i iff the fact eb belongs to Ei. We further
assume that every input program contains event truE. This allows for defining reactive
rules that are always triggered (reacting on event truE), or for expressing commands
of updates to ERA systems, by having in the input program reactive rules reacting to
truE and with empty true condition. For instance, updating the system of example 1
with rule R1 is done by adding to the input program On truE If true Do assert(R1).

Since a complex event is obtained by composing basic events that occurred in dis-
tinct time instants (viz. when using operator A), for detecting the occurrence of complex
events it is necessary to store the sequence of all the received input programs. Formally,
an ERA system S is a triple of the form (P, EP , Ei.EF) where P is an ERA dynamic
program, EP is the sequence of all the previously received input programs and Ei.EF is
the sequence of the current (Ei) and the future (EF) input programs. As it will be clear
from sections 4.3 and 4.4, the sequence EF does not influence the system at instant i
and hence no “look ahead” capability is required. However, since a system is capable
(via action raise) of autonomously raising events in the future, future input programs
are included as “passive” elements that are modified as effects of actions (see rule (2)).

The semantics of an ERA system specifies, at each instant, which conclusions are
derived, which actions are executed, and what are the effects of those actions. Given a
conclusion B, and an ERA system S, notation S `e B denotes that S derives B (or that
B is inferred by S). The definition of `e is to be found in section 4.3.

At each instant, an ERA system S concurrently executes all the actions ak such that
S `e ak. As a result of these actions an ERA system transits into another ERA system.
While the execution of basic actions is “instantaneous”, complex actions may involve
the execution of several basic actions in a given order and hence require several transi-
tions to be executed. For this reason, the effects of actions are defined by transitions of
the form 〈S, A〉 7→G 〈S ′, A′〉 where S,S ′ are ERA systems, A,A′ are sets of actions
and G is a set of basic actions. The basic actions in G are the first step of the execution
of a set of actions A, while the set of actions A′ represents the remaining steps to com-
plete the execution of A. For this reason A′ is also called the set of residual actions of
A. The transition relation 7→ is defined by a transition system in section 4.4. At each
instant an ERA system receives an input program, derives a new set of actions AN and
starts to execute these actions together with the residual actions not yet executed. As a
result, the system evolves according to the transition relation 4 →. Formally:

AN = {ak ∈ A : S `e ak} ∧ 〈S, (A ∪AN)〉 7→G 〈S ′, A′〉
〈S, A〉 →G 〈S ′, A′〉

(1)

4.3 Inferring conclusions

The inference mechanism of ERA is derived from the inference mechanism for DyLPs.
In section 3, we provide two distinct ways (called resp. cautious and brave reasoning)
to define an inference relation ` between a DyLP and a conclusion on the basis of the

4 Transition relation 7→ defines the effect of the execution of a set of actions, while → defines
the global evolution of the system.

refined semantics. From the inference relation `, in the following we derive a relation
`e that infers conclusions from an ERA system.

Let S = (P, EP , Ei.EF) be an ERA system over LERA : (E ,L,A), with EP =
E1, . . . Ei−1. For any m < i, let Sm be the ERA system (P, Em−1, Em.null). Se-
quence EF represents future input programs and is irrelevant for the purpose of infer-
ring conclusions in the present, and sequence EP stores previous events, and is only
used for detecting complex events. The relevant expressions, hence, are those in P and
Ei. As a first step we reduce the expressions of these programs to LP rules. An event de-
finition, associates an event e to a new atom edef . This is encoded by the rule edef ← e.
Action definitions, instead, specify what are the effects of actions and hence are not rel-
evant for inferring conclusions. Within ERA, actions are executed iff they are inferred
as conclusions. Hence, reactive (resp. inhibition) rules are replaced by LP rules whose
heads are actions (resp. negation of actions) and whose bodies are the events and con-
ditions of the rules. Formally: let PR and ER

i be the DyLP and GLP obtained by P and
Ei by deleting every action definition and by replacing:

every rule On e If Condition Do Action. with Action← Condition, e.
every rule When B Do not Action with not Action← B.
every definition edef is e. with edef ← e.

Basically events are reduced to ordinary literals. Since events are meant to have special
meanings, we encode these meanings by extra rules. Intuitively, operators 4 and 5
stands for the logic operators ∧ and ∨. This is encoded by the following set of rules

ER(E) : 4(e1, e2)← e1, e2. 5 (e1, e2)← e1. 5 (e1, e2)← e2. ∀ e1, e2, e3 ∈ E
Event A(e1, e2, e3) occurs at instant i iff e2 occurs at instant i and some conditions on
the occurrence of e1, e2 and e3 where satisfied in the previous instants. This is formally
encoded by the set of rules AR(S) defined as follows5: AR(S) ={
∀ e1, e2, e3 ∈ E A(e1, e2, e3)← e2 : ∃m < i s.t.
Sm `e e1 and Sm 6`e e3 and (∀ j : m < j < i : Sj 6`e e2 and Sj 6`e e3)

}
The sets of rules ER

i , ER(E) and AR(S) are added to PR and conclusions are derived
by the inference relation ` applied on the obtained DyLP6. Formally:

Definition 3. Let ` be an inference relation defined as in Section 3, and S, PR, ER
i ,

ER(E), AR(S) be as above and K be any conclusion over E ∪ L ∪ A. Then:

(P, EP , Ei.EF) `e K ⇔ PR] (ER
i ∪ ER(E) ∪D(P) ∪AR(S)) ` K

We specified no rules for operator not . These rules are not needed since event (literal)
not ep is inferred by default negation whenever there is no proof for ep. The following
theorem formalizes the intuitive meanings the various operators provided in section 4.1.

5 The definition of AR(S) involves relation `e which is defined in terms of AR(S) itself . This
mutual recursion is well-defined since, at each recursion, AR(S) and `e are applied on pre-
vious instants until eventually reaching the initial instant (i.e. the basic step of the recursion).

6 The program transformation above is functional for defining a declarative semantics for ERA,
rather than providing an efficient tool for an implementation. Here specific algorithms for
event-detection clearly seem to provide a more efficient alternative.

Proposition 1. Let S be as above, eb, a basic event, ep a positive event, edef an event
name and e1, e2, e3 three events, the following double implications hold:

S `e e1 4 e2 ⇔ S `e e1 ∧ S `e e2. S `e eb ⇔ eb ∈ Ei

S `e e1 5 e2 ⇔ S `e e1 ∨ S `e e2. S `e not ep ⇔ S 6`e ep.
S `e A(e1, e2, e3)⇔ ∃m < i s.t. Sm `e e1 ∧ Sm 6`e e3 ∧ ∀j s.t.

m < j < i : Sj 6`e e2 ∧ Sj 6`e e3 ∧ S `e e2.
S `e edef ⇔ S `e e ∧ edef is e ∈ P

4.4 Execution of actions
We are left with the goal of defining what are the effects of actions. This is accomplished
by providing a transition system for the relation 7→ that completes, together with tran-
sition (1) and the definition of `e, the semantics of ERA. As mentioned above, these
transitions have the form: 〈S, A〉 7→G 〈S ′, A′〉.

The effects of basic actions on the current ERA program are defined by the updating
function up/2. LetP be an ERA dynamic program A a set of, either internal or external,
basic actions. The output of function up/2 is the updated program up(P,A) obtained in
the following way: First delete from P all the rules retracted according to A, and all the
(event or action) definitions ddef is dold such that action define(ddef is dnew) belongs
to A; then update the obtained ERA dynamic program with the program consisting of
all the rules asserted according to A and all the new definitions in A. Formally:

DR(A) = {d : define(d) ∈ A} ∪ {τ : assert(τ) ∈ A} ∪D(A)
R(P, A) = {τ : retract(τ) ∈ A} ∪ {ddef is dold ∈ P : ddef is dnew ∈ D(A)}
up(P, A) = (P \R(P, A))..DR(A)

Let eb be any basic event and ai an external action or an internal action of one of the fol-
lowing forms: assert(τ), retract(τ), define(d). On the basis of function up/2 above,
we define the effects of (internal and external) basic actions. At each transition, the cur-
rent input program Ei is evaluated and stored in the sequence of past events and the
subsequent input program in the sequence EF becomes the current input program (see
1st and 3rd rules below). The only exception involves action raise(eb) that adds eb in
the subsequent input program Ei+1. When a set of actions A is completely executed its
set of residual actions is ∅. Basic actions (unlike complex ones) are completely executed
in one step, hence they have no residual actions. Formally:

〈(P, EP , Ei.EF), ∅〉 7→∅ 〈(P, EP ..Ei, EF), ∅〉
〈(P, EP , Ei.Ei+1.ES), {raise(eb)}〉 7→∅ 〈(P, EP ..Ei, (Ei+1 ∪ {eb}).EF), ∅〉

〈(P, EP , Ei.EF), {ai}〉 7→{ai} 〈(up(P, {ai}), EP ..Ei, EF), ∅〉

Note that, although external actions do not affect the ERA system, as they do not affect
the result of up/2, they are nevertheless observable, since they are registered in the set
of performed actions (cf. 3rd rule above). Unlike basic actions, generally the execution
of a complex action involves several transitions. Action a1 . a2, consists into first ex-
ecuting all basic actions for a1, until the set residual actions is ∅, then to execute all
the basic actions for a2. We use the notation A1 . a2, where A1 is a set of actions, to
denote that action a2 is executed after all the actions in the set A1 have no residual ac-
tions. Action a1‖a2, instead, consists into concurrently executing all the basic actions

forming both actions, until there are no more of residual actions to execute. Similarly,
the execution of a set of actions A = {a1, . . . , an} consists in the concurrent execution
of all its actions ak until the set of residual actions is empty.

The execution of IF (C, a1, a2) amounts to the execution of a1 if the system infers
C, or to the execution of e2 otherwise. Given an ERA system S = (P, EP , Ei.EF)
with P : P1 . . . Pn, let D(S) be the set of all the action definitions d such that, for some
j, d ∈ Pj or d ∈ Ei. The execution of action adef , where adef is defined by one or
more action definitions, corresponds to the concurrent executions of all the actions aks
such that adef is ak belongs to D(S). Formally:

〈S, {a1, a2}〉 7→G 〈S ′, A′〉
〈S, {a1‖a2}〉 7→G 〈S ′, A′〉

〈S, {a1}〉 7→G1 〈S ′, A′
1〉

〈S, {a1 . a2}〉 7→G1 〈S ′, {A′
1 . a2}〉

〈S, A1〉 7→G1 〈S ′, A′
1〉

〈S, {A1 . a2}〉 7→G1 〈S ′, {A′
1 . a2}〉

〈S, {a2}〉 7→G2 〈S ′′, A′′
2 〉

〈S, {∅ . a2}〉 7→G2 〈S ′′, A′′
2 〉

S `e C ∧ 〈S, {a1}〉 7→G1 〈S ′, A′〉
〈S, {IF (C, a1, a2)}〉 7→G1 〈S ′, A′

1〉
S 6`e C ∧ 〈S, {a2}〉 7→G2 〈S ′′, A′′

2 〉
〈S, {IF (C, a1, a2)}〉 7→G2 〈S ′′, A′′

2 〉
A = {ak : adef is ak. ∈ D(S)} ∧ 〈S, A〉 7→G 〈S ′, A′〉

〈S, {adef}〉 7→G 〈S ′, A′〉
A = {a1, .., an} 〈(P, EP , Ei.Ei+1.EF), {ak}〉 7→Gk 〈(Pk, EP ..Ei, E

k
i+1.EF), A′

k}〉
〈(P, EP , Ei.Ei+1.EF), A〉 7→

S
Gk 〈(up(P,

S
Gk), EP ..Ei,

S
Ek

i+1.EF),
S

A′
k〉

As it is clear from this last rule, the definition of concurrent execution of actions in
ERA does not rely on any concept of serialization. Actions may have, three different
effects. Namely: to update the system, to rise new events, or to modify the external
environment (by external actions). Semantically, internal updates are defined by func-
tion up/2 (see section 4.4) which is defined over an ERA dynamic program and a set
of basic actions, while the raised events are added to the next input program and are
then processed concurrently. No serialization is then needed for this kind of actions. Fi-
nally, the description and execution of external actions do not belong to the semantics of
ERA, since the meaning and effects of these actions depend on the application domains.
Singular applications may require some notion of serialization for external actions (for
instance, messages sent over the same communication channel are sent one by one.)

5 Conclusions and Related Work
We identified desirable features for an ECA language, namely: a declarative semantics,
the capability to express complex events and actions in a compositional way, and that
of receiving external updates, and performing self updates to data, inference rules and
reactive rules. For this purpose we defined the logic programming ECA language ERA,
and provided it with a declarative semantics based on the refined semantics of DyLPs
(for inferring conclusions) and a transition system (for the execution of actions). This
new language is close in spirit to LP update languages like EPI [12], LUPS [4], Kabul
[17] and, most significantly, Evolp [3]. All these languages have the possibility to up-
date rules (though in EPI and LUPS only derivation rules can be updated). However,
none of these supports external nor complex actions or complex events. In [16] Evolp
has been extended to consider simple external actions, in the context of an agent ar-
chitecture. The ERA language goes much beyond in the definition of complex actions

and events. A formal comparison with Evolp, clearly showing how ERA is a proper
extension of it, cannot be shown here for lack of space.
There exist several alternative proposals of ECA formalisms. Most of these approaches
are mainly procedural like, for instance, AMIT [25] and JEDI [13] or at least not fully
declarative [26]. A declarative situation calculus-like characterizations of active data-
base systems is given in [6], although the subject of complex actions is not treated there.
An example of a Semantic Web-oriented ECA languages is XChange [9], which also
has a LP-like semantics, and allows to define reactive rules with complex actions and
events. However, it does not support a construct similar to action definitions for defining
actions, nor does it consider updates of rules. Updates of rules are also not part of the
general framework for reactivity on the semantic web defined in [21]. Defining actions
is a possibility allowed by the Agent-Oriented Language DALI [11], which in turn does
not support complex events. Another related work is [23] which applies DyLPs to the
agent language 3APL. Since 3APL is a language and architecture for programming BDI
agents, this work is not directly relatable to ECA paradigms, although future compar-
isons with ERA could be interesting given the similarity of the semantics for KR. The
ideas and methodology for defining complex actions are inspired by works on process
algebras like CCS [22] and CSP [15] Rather then proposing high level ECA languages,
these works design abstract models for defining programming languages for parallel
execution of processes. Other related frameworks are Dynamic Prolog [8] and Transac-
tion Logic Programming (TLP) [7]. These focus on the problem of updating a deductive
database by performing transactions. In particular, TLP shares with ERA the possibil-
ities to specify complex (trans)actions in terms of other, simpler, ones. However, TLP
(and Dynamic Prolog) does not support complex events, nor does it cope with the pos-
sibility of receiving external inputs during the computation of complex actions. Finally,
none of these ECA languages show update capabilities analogous to the ones of LP
update languages, and that are also in ERA. As such, it is not obvious how to provide a
meaning to inhibition rules or exceptions to rules in those ECA languages.

The language ERA still deserves a significant amount of research. Preliminary in-
vestigations evidenced interesting properties of the operators of the action algebra like
associativity, commutativity etc, and deserve further study. In this paper we opted for
an inference system based on the refined semantics for DyLPs. With limited efforts, it
would be possible to define an inference system on the basis of another semantics for
DyLPs such as [17, 5, 12]. In particular, we intend to develop a version of ERA based on
the well founded semantics of DyLPs [5]. Well founded semantics [14] is a polynomial
approximation to the answer set semantics that and is suitable for applications requir-
ing the capability to quickly process vast amount of information. Implementations of
the language are subject of ongoing research, where intend to take advantage of existing
event-detection algorithms. For simplicity, here we presented a minimal set of operators
for the event and action algebras. Specific application domains and confrontations with
related languages may suggest eventual extensions of the language. For instance, the
language GOLOG [18] presents an operator ∨, representing non deterministic choice
between two actions which is not expressible in the current definition of ERA. We also
plan to provide the possibility to execute ACID transactions in ERA and explore possi-
ble relations with Statelog [20].

References
1. Raman Adaikkalavan and Sharma Chakravarthy. Snoopib: Interval-based event specification

and detection for active databases. In ADBIS, pages 190–204, 2003.
2. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle for semantics

of dynamic logic programming. Studia Logica, 79(1), 2005.
3. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca,

S. Greco, N. Leone, and G. Ianni, editors, JELIA’02, LNAI, 2002.
4. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A language for

updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.
5. F. Banti, J. J. Alferes, and A. Brogi. The well founded semantics for dynamic logic programs.

In Christian Lemaı̂tre, editor, IBERAMIA-9, LNAI, 2004.
6. Chitta Baral and Jorge Lobo. Formal characterization of active databases. In Logic in Data-

bases, pages 175–195, 1996.
7. A. J. Bonner and M. Kifer. Transaction logic programming. In David S. Warren, editor,

ICLP-93, pages 257–279, Budapest, Hungary, 1993. The MIT Press.
8. Anthony J. Bonner. A logical semantics for hypothetical rulebases with deletion. Journal of

Logic Programming, 32(2), 1997.
9. F. Bry, P. Patranjan, and S. Schaffert. Xcerpt and xchange - logic programming languages

for querying and evolution on the web. In ICLP, pages 450–451, 2004.
10. Jan Carlson and Björn Lisper. An interval-based algebra for restricted event detection. In

FORMATS, pages 121–133, 2003.
11. Stefania Costantini and Arianna Tocchio. The DALI logic programming agent-oriented lan-

guage. In JELIA, pages 685–688, 2004.
12. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics based on causal

rejection. Theory and Practice of Logic Programming, 2:711–767, 2002.
13. G.Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop

complex distributed systems. In 20th Int. Conf. on Software Enginieering, 1998.
14. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic

programs. Journal of the ACM, 38(3):620–650, 1991.
15. C.A.R. Hoare. Communication and Concurrency. Prentice-Hall, 1985.
16. J. Leite and L. Soares. Enhancing a multi-agent system with evolving logic programs. In

K. Satoh K. Inoue and F. Toni, editors, CLIMA-VII, 2006.
17. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intelligence and

Applications. IOS Press, 2003.
18. Hector J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A logic

programming language for dynamic domains. Journal of Logic Programming, 1997.
19. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (preliminary

report). In B. Nebel, C. Rich, and W. Swartout, editors, KR-92, 1992.
20. B. Ludäscher, W. May, and G. Lausen. Nested transactions in a logical language for active

rules. In D. Pedreschi and C. Zaniolo, editors, Logic in Databases, pages 197–222, 1996.
21. W. May, J. Alferes, and R. Amador. Active rules in the Semantic Web: Dealing with language

heterogeneity. In RuleML, pages 30–44. Springer, 2005.
22. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
23. V. Nigam and J. Leite. Incorporating knowledge updates in 3APL - preliminary report. In

R. Bordini, M. Dastani, J. Dix, and A. El F. Seghrouchni, editors, ProMAS’06, 2006.
24. S.Abiteboul, C.Culet, L. Mignet, B.Amann, T.Milo, and A. Eyal. Active views for electronic

commerce. In 25th Very Large Data Bases Coference Proceedings, 1999.
25. Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Amit - the situation manager. The

International Journal on Very Large Data Bases archive, 13, 2004.
26. J. Widom and S. Ceri, editors. Active Database Systems – Triggers and Rules For Advanced

Database Processing. Morgan Kaufmann Publishers, 1996.

