
Reasoning with Rules and Ontologies?

Thomas Eiter1, Giovambattista Ianni1, Axel Polleres2,
Roman Schindlauer1, and Hans Tompits1

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,ianni,roman,tompits}@kr.tuwien.ac.at
2 Universidad Rey Juan Carlos, 28933 Móstoles, Spain

axel@polleres.net

Abstract. For realizing the Semantic Web vision, extensive work is underway
for getting the layers of its conceived architecture ready. Given that the Ontol-
ogy Layer has reached a certain level of maturity with W3C recommendations
such as RDF and the OWL Web Ontology Language, current interest focuses on
the Rules Layer and its integration with the Ontology Layer. Several proposals
have been made for solving this problem, which does not have a straightforward
solution due to various obstacles. One of them is the fact that evaluation prin-
ciples like the closed-world assumption, which is common in rule languages,
are usually not adopted in ontologies. Furthermore, naively adding rules to on-
tologies raises undecidability issues. In this paper, after giving a brief overview
about the current state of the Semantic-Web stack and its components, we will
discuss nonmonotonic logic programs under the answer-set semantics as a pos-
sible formalism of choice for realizing the Rules Layer. We will briefly discuss
open issues in combining rules and ontologies, and survey some existing pro-
posals to facilitate reasoning with rules and ontologies. We will then focus on
description-logic programs (or dl-programs, for short), which realize a transpar-
ent integration of rules and ontologies supported by existing reasoning engines,
based on the answer-set semantics. We will further discuss a generalization of dl-
programs, viz. HEX-programs, which offer access to different ontologies as well
as higher-order language constructs.

1 Introduction

For the realization of the Semantic Web, the integration of different layers of its con-
ceived architecture is a fundamental issue. In particular, the integration of rules and
ontologies is currently under investigation, and many proposals in this direction have
been made. They range from homogeneous approaches, in which rules and ontologies
are combined in the same logical language (e.g., in SWRL and DLP [31, 24]), to hybrid
approaches in which the predicates of the rules and the ontology are distinguished and
suitable interfacing between them is facilitated, like, e.g., [18, 14, 59, 30] (see [4] for

? This research has been partially supported by the European Commission within the FP6 project
REWERSE (IST 506779, http://rewerse.net), by the Austrian Science Fund (FWF)
project P17212-N04, and by the CICyT of Spain project TIC-2003-9001-C02.

a survey about such approaches). While the former approaches provide a seamless se-
mantic integration of rules and ontologies, they suffer from problems concerning either
limited expressiveness or undecidability, because of the interaction between rules and
ontologies. Furthermore, they are not (or only to a limited extent) capable of dealing
with ontologies having different formats and semantics (like, e.g., RDF Schema and
OWL DL, which have some semantic incompatibilities) at the same time. This can be
handled, in a fully transparent way, by approaches which keep rules and ontologies
separate. Here, ontologies are treated as external sources of information, which are ac-
cessed by rules that also may provide input to the ontologies. In view of well-defined
interfaces, the precise semantic definition of ontologies and their actual structure does
not need to be known. This in particular facilitates ontology access as a Web service,
where also privacy issues might be involved (e.g., a customer taxonomy in a financial
domain).

In this paper, we shall consider reasoning with rules and ontologies from the answer-
set programming (ASP) [6] perspective. The latter is nowadays a general term for a
powerful knowledge representation (KR) and declarative programming paradigm which
includes many language features from nonmonotonic logics, as well as support for
reasoning with constraints and preferences. ASP has recently been used as a reliable
specification tool in a number of promising applications. For instance, several tasks in
information integration, knowledge management, security management, and configura-
tion, which require complex reasoning capabilities, have been successfully tackled us-
ing ASP. In particular, these applications have been explored in several recent projects
funded by the European Commission (e.g., the projects WASP [61], INFOMIX [35],
and ICONS [33]).

Some attractive benefits of ASP are summarized as follows:

– Full declarativity: ASP is fully declarative. The order of rules and atoms in a logic
program is not important, and, in general, no knowledge of the operational seman-
tics a specific solver adopts is required.

– Decidability: ASP programs are, in their basic flavor, decidable. No special restric-
tions are needed in order to keep this important property.

– Support of nonmonotonicity: ASP supports strong negation as well as negation as
failure. The latter facilitates default reasoning and nonmonotonic inheritance.

– Nondeterminism: Concepts may be defined which “range” over a space of choices
without any particular restriction. Combined with extensions for preferences and
different kinds of constraints, this enables a compact specification of search and
optimization problems.

– Scalability: Despite the computational expressiveness of ASP, current state-of-the-
art solvers, such as DLV [36], GnT [34], or Cmodels-3 [38], have reached a level
of maturity which allows them to deal even with large datasets.

We refer to [60] for a repository of ASP solvers, and to [63] for a comprehensive
report on recent ASP applications; a showcase collection is available online at

http://www.kr.tuwien.ac.at/projects/WASP/showcase.html.

In the Semantic Web perspective, significant efforts have been made to highlight
the benefits of ASP for the Rules Layer of the Semantic Web architecture and its inter-

Fig. 1. Ontology and rule languages in the Semantic-Web layer cake

actions with the Ontology Layer. A variety of upcoming applications supports adopt-
ing ASP as a formalism for realizing the Rules Layer. The inherent nondeterminism
and the possibility to enrich the semantics with weak (i.e., soft) constraints make ASP
a well-suited candidate for applications like Web-service matchmaking and ontology
alignment [58]. It is worth mentioning that an ASP application for Web-service compo-
sition [49] earned first prize in the EEE Web-Service Composition Contest [13].

The remainder of this paper is organized as follows. The next section contains pre-
liminaries on the relevant parts of the Semantic Web architecture, and Section 3 intro-
duces ASP. In Section 4, we point out issues in combining rules and ontologies, and
briefly survey approaches in this direction. After that, Section 5 presents nonmonotonic
description-logic programs (or dl-programs, for short) as an example of an approach
for combining rules and ontologies. The subsequent Section 6 presents an extension of
this approach towards an integration of rules and general external software, in which
the usage of higher-order predicates is facilitated. Finally, Section 7 provides a short
discussion and concludes the paper.

In order to have a cohesive flow and to illustrate the different ASP extensions, we in-
troduce an example in a storyboard-like fashion, which will serve as a running example
throughout the paper.

2 Ontology Formalisms

Rules and ontologies represent two main components in the Semantic-Web vision which
are expected to tightly interplay for making this vision a reality. In order to illustrate
a plausible scenario where rules and ontologies interact, we will incrementally build a
simple, yet conceivable, example.

Example 1 (Motivating Example, Part I). The Reasoning-Web Summer School is plan-
ning the organization of its social dinner. In order to make the attendees happy with this
event and to make them familiar with ontologies, they decide to ask them to declare their
preferences about wines, in terms of a class description reusing the (in)famous Wine
Ontology [62]. The organizers realize that only one kind of wine would not achieve the
goal of fulfilling all the attendees’ preferences. Thus, they aim at automatically finding
the cheapest selection of bottles such that any attendee can have his or her preferred
wine at the dinner.

The organizers quickly realize that several building blocks are needed to accom-
plish this task. First of all, a good formalism to express the domain of interest (involv-
ing wines, their properties, and bottles) is needed. So they search among the currently
available technologies and return with a strange brew of acronyms such as RDF, RDFS,
and OWL. ut

The realization of reasoning with rules and ontologies affects basically four compo-
nents of the so-called “Semantic-Web layer cake” [7]: RDF, RDFS, the Ontology Layer,
and the Rules Layer. A slightly simplified version of this relevant part of the architecture
proposal for the Semantic Web is shown in Fig. 1.

Layered on top of standards which mainly serve to provide common syntax for
information exchange on the Web, the Resource Description Framework (RDF) [57,
27] provides a common flexible data model for the Semantic Web. Based on arbitrary
labeled graphs, RDF does not enforce a particular data schema upfront. Next, RDF
Schema (RDFS) provides facilities to define simple taxonomies among concepts and
relations.

While RDFS as such could already be viewed as a simple ontology language, in
order to provide more expressiveness for describing formal conceptualizations, the On-
tology Layer was introduced and is realized by means of the OWL Web Ontology Lan-
guage [11], which can be seen as a syntactic variant of an expressive description logic.

As we already see in Fig. 1, the “Semantic-Web layer cake” is in fact not strictly
layered, since rules and ontologies appear side by side. Whereas RDF, RDFS, and OWL
have already achieved an acceptable level of maturity as W3C recommendations, it is
not yet completely clear where and how to fit in rules, possibly involving nonmono-
tonicity, preferences, or other expressive features. Defining a proper standard for in-
tegrating the plethora of rules languages around is yet to be investigated by W3C’s
recently established Rule Interchange Format (RIF) working group.3

A natural choice of rule languages relevant for the integration of rules and ontolo-
gies are those originating from logic programming and nonmonotonic reasoning, in
particular languages which are based on the answer-set programming paradigm (cf.,
e.g., [6]), on which we focus here. The latter paradigm is a purely declarative problem-
solving formalism which gained increasing momentum in the knowledge-representation
community over the last decade.

Before introducing this paradigm in more detail though, we briefly recapitulate the
established building blocks RDF(S) and OWL, and discuss their formal underpinnings.

2.1 RDF(S)

The Resource Description Framework (RDF) defines the data model for the Semantic
Web. Driven by the goal of a least possible commitment to a particular data schema, the
simplest possible structure for representing information was chosen in RDF, a labeled
graph. An RDF graph can be viewed as a set of its directed edges, commonly repre-
sented by triples of form 〈Subject Predicate Object〉, also called statements. Predi-
cates, also referred to as properties in RDF terminology, denote the labels, and link a
resource, identified by a URI, with another resource, datatype literal, or XML literal.

3 Cf. http://www.w3.org/2005/rules/wg/charter.

↔

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<rdf:Description rdf:about="http://polleres.net/foaf.rdf#me">
<foaf:knows rdf:nodeID="x"/>
<foaf:knows rdf:nodeID="y"/>
<foaf:name>Axel Polleres</foaf:name>

</rdf:Description>

<rdf:Description rdf:nodeID="a">
<foaf:name>Roman Schindlauer</foaf:name>

</rdf:Description>

<rdf:Description rdf:nodeID="b">
<foaf:name>Giovambattista Ianni</foaf:name>

</rdf:Description>

</rdf:RDF>

l
<http://polleres.net/foaf.rdf#me> foaf:knows _:ja .
<http://polleres.net/foaf.rdf#me> foaf:knows _:jb .
<http://polleres.net/foaf.rdf#me> foaf:name

"Axel Polleres".
_:jx foaf:name "Roman Schindlauer" .
_:jy foaf:name "Giovambattista Ianni" .

↔
∃x∃y .triple(me, foaf:knows, x)

∧triple(me, foaf:knows, y)
∧triple(me, foaf:name, “AxelPolleres′′)
∧triple(x, foaf:name, “RomanSchindlauer′′)
∧triple(y, foaf:name, “GiovambattistaIanni′′)

Fig. 2. Different representations of RDF

Moreover, RDF graphs may contain anonymous (“blank”) nodes, in order to express
incomplete information or queries. Fig. 2 shows an example demonstrating three com-
mon notions for RDF graphs: RDF/XML syntax, N-Triples, and representing an RDF
graph as a closed first-order formula where blank nodes are conceived as existentially
quantified variables. We use the ternary predicate triple to represent RDF statements:
alternative representations, like representing triples 〈S P O〉 by P (S, O), have some
disadvantage for RDF, as we will see below.

This graphs contains the following information: The resource

“http://polleres.net/foaf.rdf#me”

with the name “Axel Polleres” knows someone named “Giovambattista Ianni” and
someone named “Roman Schindlauer”. Terms like foaf:knows are shortcuts for full
URIs like http://xmlns.com/foaf/0.1/knows,4 i.e., using so-called name-
space prefixes from XML, for ease of legibility.

Moreover, basic RDF defines a special property rdf:type, which allows the specifi-
cation of “is-a” relations, such as, for instance,

〈http://polleres.net/foaf.rdf#me rdf:type foaf:Person〉.

RDF supports two basic types, viz. rdf:Property and rdf:XMLLiteral, and a basic set of
XML schema datatypes.

The semantics of RDF can be essentially viewed as corresponding to the first-order
representation chosen in Fig. 2 plus entailment of several axiomatic triples, such as that
the triple 〈X rdf:type rdf:Property 〉 is an axiom for all X which occur in the predicate

4 This represents typical information which you might find in a so-called FOAF description,
an RDF vocabulary for expressing personal information with growing popularity, see http:
//www.foaf-project.org/.

Table 1. Semantics of RDFS

∀S, P, O.(triple(S, P, O) ⊃ triple(P, rdf:type, rdf:Property)) ,

∀S, P, O.(triple(S, P, O) ⊃ triple(S, rdf:type, rdfs:Resource)) ,

∀S, P, O.(triple(S, P, O) ⊃ triple(O, rdf:type, rdfs:Resource)) ,

∀S, P, O.(triple(S, P, O), triple(P, rdfs:domain, C)) ⊃ triple(S, rdf:type, C)) ,

∀S, P, O, C.(triple(S, P, O) ∧ triple(P, rdfs:range, C) ⊃ triple(O, rdf:type, C)) ,

∀C.(triple(C, rdf:type, rdfs:Class) ⊃ triple(C, rdfs:subClassOf, rdfs:Resource) ,

∀C1, C2, C3.((triple(C1, rdfs:subClassOf, C2) ∧
triple(C2, rdfs:subClassOf, C3)) ⊃ triple(C1, rdfs:subClassOf, C3) ,

∀S, C1, C2.((triple(S, rdf:type, C1) ∧
triple(C1, rdfs:subClassOf, C2)) ⊃ triple(S, rdf:type, C2)) ,

∀S, C.(triple(S, rdf:type, C) ⊃ triple(C, rdf:type, rdfs:Class) ,

∀C.(triple(C, rdf:type, rdfs:Class) ⊃ triple(C, rdfs:subClassOf, C) ,

∀P1, P2, P3.((triple(P1, rdfs:subPropertyOf, P2) ∧
triple(P2, rdfs:subPropertyOf, P3)) ⊃ triple(P1, rdfs:subPropertyOf, P3)) ,

∀S, P1, P2, O.(triple(S, P1, O) ∧ triple(P1, rdfs:subPropertyOf, P2) ⊃ triple(S, P2, O)) ,

∀P.(triple(P, rdf:type, rdf:Property) ⊃ triple(P, rdfs:subPropertyOf, P))

position of any other triple. In particular, this also makes, for instance, 〈 rdf:type rdf:type
rdf:Property 〉 an axiom.

The semantics of RDF involves some more peculiarities in the handling of XML
literals, RDF containers, and lists. Most remarkably, it should be noted that the RDF
vocabulary contains an infinite number of predefined properties rdf: 1, rdf: 2, . . . for
container membership, and thus gives rise to an infinite number of axiomatic triples
〈rdf: 1 rdf:type rdf:Property〉, We refer the interested reader to [27] for details.

RDF Schema (RDFS) is a semantic extension of basic RDF essentially by giving
special meaning to the properties rdfs:subClassOf and rdfs:subPropertyOf, as well as to
several types (like rdfs:Class, rdfs:Resource, rdfs:Literal, rdfs:Datatype etc.), in order to
express simple taxonomies and hierarchies among properties and resources.

The semantics of RDFS can to a large extent be approximated by a set of sentences
of first-order logic (FOL), reusing the notion from above (see Table 1)5 plus the ax-
iomatic triples from [27, Sections 3.1 and 4.1]. Note that our choice of using a ternary
predicate triple in favor of a binary representation helped us to avoid higher-order-
like rules such as ∀S, P, O. P (S, O) ⊃ rdf:type (P ,rdf:Property) in this axiomatization.
Again, we do not elaborate upon peculiarities and additional rules or axioms in the
context of RDF containers and XML literals here.

5 We use ’⊃’ for material implication to avoid confusion with ’←’ as commonly used in logic
programming.

Table 2. Expressing OWL DL Property axioms to DL and FOL

OWL property axioms as RDF Triples DL syntax FOL short representation
〈P rdfs:domain C〉 > v ∀P−.C ∀x, y : P (x, y) ⊃ C(x)
〈P rdfs:range C〉 > v ∀P.C ∀x, y : P (x, y) ⊃ C(y)

〈P owl:inverseOf P0〉 P ≡ P−
0 ∀x, y : P (x, y) ≡ P0(y, x)

〈P rdf:type owl:SymmetricProperty 〉 P ≡ P− ∀x, y : P (x, y) ≡ P (y, x)
〈P rdf:type owl:FunctionalProperty 〉 > v6 1P ∀x, y1, y2 : P (x, y1) ∧ P (x, y2) ⊃ y1 =y2

〈P rdf:type owl:InverseFunctionalProperty 〉 > v6 1P− ∀x1, x2, y : P (x1, y) ∧ P (x2, y) ⊃ x1 =x2

〈P rdf:type owl:TransitiveProperty 〉 P+ v P ∀x, y, z : P (x, y) ∧ P (y, z) ⊃ P (x, z)

2.2 Description Logics and the OWL Web Ontology Language

The next layer in the Semantic-Web stack serves to formally define shared conceptu-
alizations, i.e., ontologies [25], on top of the RDF/RDFS data model. In order to for-
mally specify such domain models, the W3C has chosen a language which is close to
a syntactic variant of an expressive but still decidable description logic (DL), namely
SHOIN (D). More precisely, the OWL DL variant coincides with this description
logic, at the cost of imposing several restrictions on the usage of RDF(S). These re-
strictions (e.g., disallowing that a resource is used both as a class and an instance) are
lifted in OWL Full which combines the description logic flavor of OWL DL and the
syntactic freedom of RDF(S). For an in-depth discussion of the peculiarities of OWL
Full, we refer the interested reader to the language specification [11] and restrict our
observations to OWL DL here.

While RDFS itself may already be viewed as a simple ontology language, OWL
adds several features beyond the simple definition of hierarchies (rdfs:subPropertyOf,
rdfs:subClassOf) to define relations between properties and classes.

As for properties, OWL allows to specify transitive, symmetric, functional, inverse
functional, and inverse properties. The correspondences of respective OWL properties
and classes with description logics and first-order logic axioms expressible in OWL can
be found in Table 2. Note that we switch to the binary representation P (S, O) of triples
here, since in description logics (and thus in OWL DL), predicate names and resources
are assumed to be disjoint.

Moreover, OWL allows the specifications of complex class descriptions to be used
in rdfs:subClassOf statements. Complex descriptions may involve class definitions in
terms of union or intersection of other classes, as well as restrictions on properties. Ta-
ble 3 gives an overview of the expressive possibilities of OWL for class descriptions and
its semantic correspondences with description logics and first-order logics.6 Such class
descriptions can be related to each other using rdfs:subClassOf, owl:equivalentClass, or
owl:disjointWith keywords, which allow us to express description-logic axioms of the
form C1 v C2, C1 ≡ C2, or C1 u C2 v ⊥, respectively, in OWL.

Finally, OWL allows to express explicit equality or inequality relations between in-
dividuals by means of the owl:sameAs and owl:differentFrom properties, e.g., the triples

6 We use a simplified notion for the first-order logic translation here—actually, the translation
needs to be applied recursively for any complex description-logic term. For a formal specifica-
tion of the correspondence between description-logic expressions and first-order logic, cf. [5].

Table 3. Mapping of OWL DL Complex Class Descriptions to DL and FOL

OWL complex class descriptions∗ DL syntax FOL short representation
owl:Thing > x = x

owl:Nothing ⊥ ¬x = x

owl:intersectionOf (C1 . . . Cn) C1 u . . . u Cn
V

Ci(x)

owl:unionOf (C1 . . . Cn) C1 t . . . t Cn

W
Ci(x)

owl:complementOf (C) ¬C ¬C(x)

owl:oneOf (o1 . . . on) {o1 . . . on}
W

x = oi

owl:restriction (P owl:someValuesFrom (C)) ∃P.C ∃y.P (x, y) ∧ C(y)

owl:restriction (P owl:allValuesFrom (C)) ∀P.C ∀y.P (x, y) ⊃ C(y)

owl:restriction (P owl:value (o)) ∃P.{o} P (x, o)

owl:restriction (P owl:minCardinality (n)) > nP ∃n
i=1yi.

Vn
j=1 P (x, yj) ∧

V
i6=j yi 6=yj

owl:restriction (P owl:maxCardinality (n)) 6 nP ∀n+1
i=1 yi.(

Vn
j=1 P (x, yi) ⊃

W
i6=j yi =yj

´
∗For reasons of legibility, we use a variant of the OWL abstract syntax [47] in this table.

〈 http://www.polleres.net/foaf.rdf\#me owl:sameAs
http://polleres.net/foaf.rdf\#me 〉

and

〈 http://polleres.net/foaf.rdf\#me owl:differentFrom
http://www.gibbi.com/foaf.rdf\#me 〉

boil down to

http://www.polleres.net/foaf.rdf\#me =
http://polleres.net/foaf.rdf\#me

∧ http://polleres.net/foaf.rdf\#me 6=
http://www.gibbi.com/foaf.rdf\#me.

For details on the description logics notion used in the Tables 2 and 3, we refer the
interested reader to, e.g., [5]. For our purposes, basic understanding of the correspond-
ing definitions in term of first-order logic will be sufficient. What makes description
logics the formalism of choice is the fact that it defines a decidable fragment of first-
order logic, i.e., queries for entailment of subclass relationships or class membership of
a particular individual are effectively computable.

Example 2 (Ontologies in Description Logics). Taking the wine ontology from [62], let
us illustrate some of the conceptualizations therein in their corresponding description-
logics syntax:

Wine v PotableLiquidu = 1hasMaker u ∀hasMaker .Winery ;
Wine v≥ 1madeFromGrapeu = 1hasFlavor ;

∀hasColor−.T v {“White”, “Rose”, “Red”};
WhiteWine ≡Wine u ∀hasColor .{“White”}.

This knowledge base expresses the following information: A wine is a potable liquid,
having exactly one maker, who is a member of the class Winery . Moreover, wines are

made from at least one sort of grapes and have exactly one of the flavors, and one of
the colors “White”, “Rose”, and “Red”. A WhiteWine is a wine with color “White”.
Finally, Welschriesling is an instance of WhiteWine . ut

3 Answer-Set Programming

After having introduced some foundations of the Semantic Web in terms of a data model
(RDF) and ontology languages (RDFS and OWL), let us now turn to logic programs as
a way to realize the Semantic-Web Rules Layer. For illustration purposes, consider the
following continuation of our running example:

Example 3 (Motivating Example, Part II). As soon as the wine domain is described,
the social-dinner organizers now have to face the problem of quickly modeling rules
that describe a set of bottles that are suitable for all the participants, and to express the
choice criteria among these candidate sets. They realize soon that domain-description
languages accomplished their job well, but now they need some different tool: First,
how to express possible choices of bottles? How to determine the set of attendees (say,
the class nonSatisfied) that are not assigned a compliant bottle? Unfortunately, un-
der an open-world assumption, no attendee can be entailed as belonging to this class.
Moreover, is it possible to exclude the situations where nonSatisfied is non-empty, and
where the price of this selection of bottles is possibly minimal?

They conclude that a rule-based formalism with disjunction and nonmonotonic fea-
tures would be the most appropriate formalism, and, among others, choose to investigate
on the characteristics of ASP (answer-set programming). ut

Answer-set programming has its roots in the seminal work by Gelfond and Lifs-
chitz [22], who presented a semantics for logic programs with negation as failure and
strong negation, where multiple answer sets (or stable models) may be ascribed to a
program. This inherent nondeterminism can be exploited to represent different solu-
tions to a problem in the answer sets of a logic program, as fostered, e.g., in [39, 42,
44].

3.1 Syntax

Let Φ be a first-order vocabulary with nonempty finite sets of constant and predicate
symbols, but no function symbols.7 Let X be a set of variables. A term is either a
variable from X or a constant symbol from Φ. An atom is an expression of the form
p(t1, . . . , tn), where p is a predicate symbol of arity n ≥ 0 from Φ, and t1, . . . , tn are
terms. A literal l is either an atom or an expression of form −p, where “−” denotes
strong negation and p is an atom. The complementary literal −l of l is −p if l = p
and p if l = −p. A negation-as-failure literal (or NAF-literal) is either a literal or an

7 Gelfond and Lifschitz allowed function symbols and inconsistent answer sets in their seminal
paper [22]. Current ASP solvers have limited support of function symbols, while inconsistent
answer sets are not allowed as valid answers.

expression of form not l, where “not” denotes negation as failure, or default negation,
and l is a literal. A disjunctive rule (or simply a rule) r is an expression of the form

a1 ∨ · · · ∨ al ← b1, . . . , bk,not bk+1, . . . ,not bm, (1)

where l ≥ 0, m ≥ k ≥ 0, and all ai and bj are literals. The disjunction a1 ∨ · · · ∨ al

is the head of r, while the conjunction b1, . . . , bk, not bk+1, . . . ,not bm is the body of
r, where b1, . . . , bk (resp., not bk+1, . . . ,not bm) is the positive (resp., negative) body
of r. We use H(r) to denote the set of all head literals {a1, . . . , al} of r, and B(r) to
denote the set of all body literals B+(r) ∪ B−(r) of r, where B+(r) = {b1, . . . , bk}
and B−(r) = {bk+1, . . . , bm}.

A disjunctive program (or simply program) P is a finite set of (disjunctive) rules.
If the body of a rule r is empty (i.e., if B(r) = ∅), then r is a fact, and we often

omit “←” in such a case. A rule is positive if B−(r) = ∅, and normal if the head of r is
a literal. Similarly, a program is positive resp. normal, if each rule in it is positive resp.
normal. A rule without head literals is an (integrity) constraint.

Example 4 (Simple Wine Program). The following program is a simplistic representa-
tion of a part of the wine scenario described previously, in which a plain ontology is
natively represented within the logic program.

% A suite of wine bottles and their kinds
wineBottle(“SelaksIceWine”); isA(“SelaksIceWine”, “whiteWine”);

isA(“SelaksIceWine”, “sweetWine”);
wineBottle(“CheninBlanc”); isA(“CheninBlanc”, “whiteWine”);

isA(“CheninBlanc”, “dryWine”);
wineBottle(“Chardonnay”); isA(“Chardonnay”, “whiteWine”);

isA(“Chardonnay”, “dryWine”);
wineBottle(“ChiantiClassico”); isA(“ChiantiClassico”, “redWine”);

isA(“ChiantiClassico”, “dryWine”);
wineBottle(“TaylorPort”); isA(“TaylorPort”, “redWine”);

isA(“TaylorPort”, “sweetWine”).

% Persons and their preferences
person(“axel”); preferredWine(“axel”, “whiteWine”);
person(“gibbi”); preferredWine(“gibbi”, “redWine”);
person(“roman”); preferredWine(“roman”, “dryWine”).

% Available bottles a person likes
compliantBottle(X, Z)← preferredWine(X, Y), isA(Z, Y).

The last rule describes bottles which are compliant with a person’s preference. ut

Let us now consider a more elaborate version of this program.

Example 5 (Wine Program II). Compared to Example 4, we add the following rules:

doesNotLike(X, Z)← person(X),wineBottle(Z),not compliantBottle(X, Z).

% This rule generates multiple answer sets

bottleChosen(X) ∨ −bottleChosen(X)← compliantBottle(Y, X).

% Ensure that each person gets a bottle
hasBottleChosen(X)← bottleChosen(Z), compliantBottle(X, Z);
← person(X),not hasBottleChosen(X).

The first rule concludes that somebody does not like wine bottles which do no com-
ply with the personal desires. The second rule generates different worlds: ones in which
a given bottle is chosen and others in which it is not. The third rule, together with the
constraint, prunes all worlds (under closed-world assumption, CWA) in which some
person has no bottle chosen.

Moreover, note that the second rule (the “choice” rule) may be equivalently replaced
with

−bottleChosen(X)← not bottleChosen(X), compliantBottle(Y, X);
bottleChosen(X)← not −bottleChosen(X), compliantBottle(Y, X).

Under the answer-set semantics (introduced next), this pair of rules enforces that either
bottleChosen(X) or −bottleChosen(X) is included in an answer set (but not both),
providing it contains compliantBottle(Y, X). ut

3.2 Semantics

The Herbrand universe of a program P , denoted HUP , is the set of all constant symbols
appearing in P . If there is no such constant symbol, then HUP = {c}, where c is an
arbitrary constant symbol from Φ. As usual, terms, atoms, literals, rules, programs, etc.
are ground iff they do not contain any variables. The Herbrand base of a program P ,
denoted HBP , is the set of all ground (classical) literals that can be constructed from
the predicate symbols appearing in P and the constant symbols in HUP . A ground
instance of a rule r∈P is obtained from r by replacing every variable that occurs in
r by a constant symbol from HUP . We use ground(P) to denote the set of all ground
instances of rules in P .

A set of literals X ⊆HBP is consistent iff {p,−p} 6⊆X for every atom p∈HBP .
An interpretation I relative to a program P is a consistent subset of HBP . A model of a
positive program P is an interpretation I ⊆HBP such that B(r)⊆ I implies H(r)∩I 6=
∅, for every r∈ ground(P). An answer set of a positive program P is a minimal model
of P with respect to set inclusion. In particular, if P is positive and does not involve
disjunction, then there exists a single answer set (if one exists).

Example 6 (Simple Wine Program, continued). Our simple wine program does not con-
tain disjunction. Its Herbrand universe is

HUP={“SelaksIceWine”, “CheninBlanc”, “Chardonnay”, “ChiantiClassico”,
“TaylorPort”, “whiteWine”, “redWine”, “sweetWine”, “dryWine”,
“axel”, “gibbi”, “roman”}

and its single answer set consists of all the facts of the program, together with the
following items:

compliantBottle(“axel”, “SelaksIceWine”);
compliantBottle(“axel”, “CheninBlanc”);
compliantBottle(“axel”, “Chardonnay”);
compliantBottle(“gibbi”, “ChiantiClassico”);
compliantBottle(“gibbi”, “TaylorPort”);
compliantBottle(“roman”, “CheninBlanc”);
compliantBottle(“roman”, “Chardonnay”);
compliantBottle(“roman”, “ChiantiClassico”). ut

The Gelfond-Lifschitz reduct [22] of a program P relative to an interpretation I ⊆
HBP , denoted P I , is the ground positive program that is obtained from ground(P) by

(i) deleting every rule r such that B−(r)∩ I 6= ∅, and
(ii) deleting the negative body from every remaining rule.

An answer set of a program P is an interpretation I ⊆HBP such that I is an answer
set of P I .

Note that, for positive P , P I = ground(P), and thus the answer sets of P are its
minimal models, as we recall from above. This applies to the program in Example 4.

Example 7 (Wine Program II, continued). Let us extend the answer set of the program
in Example 4 by the atoms

doesNotLike(“axel”, “ChiantiClassico”), doesNotLike(“axel”, “TaylorPort”),
doesNotLike(“gibbi”, “SelaksIceWine”), doesNotLike(“gibbi”, “CheninBlanc”),
doesNotLike(“gibbi”, “Chardonnay”), doesNotLike(“roman”, “SelaksIceWine”),
doesNotLike(“roman”, “TaylorPort”),−bottleChosen(“SelaksIceWine”),
−bottleChosen(“CheninBlanc”), bottleChosen(“Chardonnay”),
bottleChosen(“ChiantiClassico”),−bottleChosen(“TaylorPort”),
hasBottleChosen(“axel”), hasBottleChosen(“roman”),
hasBottleChosen(“gibbi”),

and let I be the resulting interpretation. Then, the program P I contains all ground
instances of positive rules on HU P , plus the rules (originally containing negation in P)

doesNotLike(c, c′)← person(c),wineBottle(c′),

where (c, c′) is from the set

{(“axel”, “ChiantiClassico”), (“axel”, “TaylorPort”), (“gibbi”, “SelaksIceWine”),
(“gibbi”, “CheninBlanc”), (“gibbi”, “Chardonnay”), (“roman”, “TaylorPort”),
(“roman”, “SelaksIceWine”)}.

As easily checked, I satisfies all rules in P I , and moreover is a minimal model of P I .
Therefore, I is an answer set of P . However, other answer sets do exist. ut

3.3 Reasoning Tasks

The main reasoning tasks associated with programs under the answer-set semantics are
the following:

– decide whether a given program P has an answer set;
– given a program P and ground literals l1, . . . , ln, decide whether l1, . . . , ln simul-

taneously hold in every (resp., some) answer set of P (this is known as cautious
resp. brave reasoning);

– given a program P and nonground literals l1, . . . , ln over variables X1, . . . , Xk,
list all assignments ν of values to X1, . . . , Xk such that l1ν, . . . , lnν is cautiously
(resp., bravely) true (query answering); and

– compute the set of all answer sets of a given program P .

Example 8 (Simple Wine Program, continued). In our simple wine program, we have
a single answer set, and thus cautious and brave reasoning coincides. For instance,
compliantBottle(“axel”, “SelaksIceWine”) is both a cautious as well as a brave con-
sequence of the program. For the query person(X), we obtain the answers “axel”,
“gibbi”, and “roman”. ut

Example 9 (Wine Program II, continued). The more elaborated wine program has 20
answer sets, corresponding to the possibilities whether a bottle is being chosen or
not. The cautious query bottleChosen(“SelaksIceWine”) fails, while the brave query
bottleChosen(“SelaksIceWine”) succeeds. For the query bottleChosen(X), we ob-
tain no answer under cautious reasoning. ut

The basic ASP language, as introduced above, has been extended in the literature
with many features like weak constraints [8], aggregates [20] (as familiar from database
query languages), or cardinality and weight constraints [45]. The fruitful combination
of these features allowed ASP to become an important knowledge-representation for-
malism for declaratively solving AI problems.

Example 10 (Wine Program III). Suppose we want to single out situations in which a
smallest number of bottles is chosen. This is effected in DLV [36] by the weak con-
straint

:∼ bottleChosen(X) [1].

Intuitively, each fact bottleChosen(c) in an answer set is assigned a penalty of 1,
and total penalties are minimized. In our example, the optimum are two bottles (e.g.,
bottleChosen(“Chardonnay”) and bottleChosen(“ChiantiClassico”)). For a formal
definition of the syntax and semantics of weak constraints, and a refinement using pri-
ority levels, we refer to [36]. ut

4 Combining Rules with Ontologies

Motivated by our wine selection example, we have illustrated that answer-set program-
ming might be a good candidate for filling the gap extending the Semantic-Web layers

with a suitable rules component. However, there are several obstacles in finding the
right combination of rich ontology languages such as OWL, which are based on clas-
sical logic, with logic-programming based languages such as answer-set programming
(see also [53] for a discussion).

4.1 Logic Programming vs. Classical Logic

As well-known, the core of logic programming, i.e., definite positive programs, has a
direct correspondence with the Horn subset of classical first-order logic. To wit, a rule
of form (1) which is definite (i.e., when l = 1) and not-free (i.e., when m = k) can be
read as a first-order sentence

(∀) b1 ∧ . . . ∧ bk ⊃ a (2)

where (∀) denotes the universal closure operator. This subset of first-order logic allows
for a sound and complete decision procedure for entailment of ground atomic formulae,
which is in the function-free (datalog) case computable in finite polynomial time.

However, there are some slight but important differences between the logic-pro-
gramming view and the first-order view already for definite programs.

Non-ground entailment. The first divergence becomes apparent already in case of pos-
itive programs. The logic-programming semantics is defined in terms of minimal Her-
brand models, i.e., sets of ground facts. Take for example the logic program

potableLiquid(X)← wine(X);
wine(X)← whiteWine(X);
whiteWine(“Welschriesling”).

Both the logic-program reading and the Horn-clause reading of this program yields
the entailment of facts whiteWine(“WelschRiesling”), wine(“WelschRiesling”), and
potableLiquid(“WelschRiesling”). The first-order reading of the program would allow
further non-factual inferences, such as

wine(“WelschRiesling”) ⊃ potableLiquid(“WelschRiesling”) and
∀ X .whiteWine(X) ⊃ PotableLiquid(X),

which are not entailed by the logic program. Logic programs, minimal Herbrand models
(and answer sets as their extension) are mainly concerned with facts.

Negation as failure vs. classical negation. Divergences become more severe when con-
sidering programs with negation. Negation as failure not is evaluated with respect to
a closed-world assumption (CWA) whereas negation in description logics and thus in
OWL (owl:complementOf) is interpreted classically. Let us again demonstrate this
with a small example:

wine(X)← whiteWine(X);
nonWhite(X)← not whiteWine(X);
wine(myDrink).

Not given any additional information, under the answer-set semantics this program
entails both bravely and cautiously the fact nonWhite(myDrink). However, this con-
clusion would not be justified in a first-order or description-logics reading of the above
program, such as:

∀X. (WhiteWine(X) ⊃Wine(X))∧ WhiteWine vWine
∀X. (¬WhiteWine(X) ⊃ NonWhite(X))∧ ¬WhiteWine v NonWhite
Wine(myDrink). myDrink ∈Wine.

The reason for this is the different purposes classical negation and negation as failure
serve: the latter to be understood as modeling (defeasible) default assumptions with
nonmonotonic behavior. While some people argue that such a kind of nonmonotonic
negation is unsuitable for an open environment like the Web, there are several applica-
tions, e.g., in information integration, where negation as failure has proved particularly
useful (see Subsection 5.3).

Strong negation vs. classical negation. Note that also strong negation, as used in ASP
has a slightly different flavor than its classical counterpart. That is, the following two
representations of a logic program and an OWL knowledge base again slightly diverge:

Wine(X)←Whitewine(X);
−Wine(myDrink).

Whitewine vWine;
myDrink ∈ ¬Wine.

Whereas the description-logic knowledge base would entail myDrink ∈ ¬whiteWine ,
the corresponding fact −whiteWine(myDrink) is not a justified conclusion in a logic-
programming setting, i.e., neither the law of the excluded middle nor contraposition
does hold upfront in ASP. Nonetheless, one can “emulate” classical behavior of certain
predicates in ASP. For instance, adding a rule whiteWine(X) ∨ −whiteWine(X) in
the above example would achieve this.

Logic Programming and equality. Answer-set programming engines typically deploy
a unique-names assumption (UNA) and do not support real equality reasoning, i.e.,
equality in the head of rules. This does not comply necessarily with the view in clas-
sical logic, and thus with RDF and OWL, where no such assumption is made. While
equality “=” and inequality “6=” predicates are allowed in rule bodies, they represent
syntactic equality and (default) negation thereof only. This shall not be confused with
OWL’s owl:sameAs and owl:differentFrom directives. Following up the example from
Section 2.2, consider the following rule base:

knowsOtherPeople(X)← knows(X, Y), X 6= Y ;
knows(“http://polleres.net/foaf.rdf\#me”,

“http://www.polleres.net/foaf.rdf\#me”).

Under standard ASP semantics where UNA is deployed, “6=” amounts to “not =”.
Thus,

knowsOtherPeople(“http://polleres.net/foaf.rdf\#me”)

would be entailed.
Enabling reasoning with equality has usually a very high computational cost. In-

deed, common description-logic reasoners like FACT++ [55] or RACER [26] also do
not support full equality reasoning and nominals.

Decidability. Finally, the probably largest obstacle towards combining the description-
logics world of OWL and the logic-programming world of ASP stems from the fact that
these two worlds face undecidability issues from two completely different angles.

Indeed, decidability of ASP follows from the fact that it is based on function-free
Horn logic where ground entailment can be determined by checking finite subsets of the
Herbrand base, i.e., decidability and termination of evaluation strategies is guaranteed
by the finiteness of the domain. However, this is not so for description logics. Decidabil-
ity of reasoning tasks such as satisfiability, class subsumption, or class membership in
description logics is often strictly dependent from the combination of constructs which
are allowed in the terminological language.

It is often possible to prove decidability by means of the so called tree-model prop-
erty. This property basically says that a description-logic knowledge base has a model
iff it has a finite tree shaped model whose depth and branching factor are bounded by the
size of the knowledge base [5]. In general, it is possible to attempt to prove decidability
by means of a generic finite-model property, although it is worth noting that SHOIN
neither has the tree-model property nor the finite-model property [32].

Unfortunately, it is difficult to combine two decidable fragments coming from the
two worlds. As shown in [37], the naive combination of even a very simple description
logic with an arbitrary Horn logic is undecidable.

4.2 Strategies for Combining Rules and Ontologies

As one can expect by the above-mentioned problems, combining the two worlds of logic
programming and classical logic, underlying description logics, is not straightforward.

However, a naive combination of description logics and Horn rules could be imag-
ined as a possible approach for the Rules Layer of the Semantic Web. Indeed, the Se-
mantic Web Rule Language (SWRL) [31] proposal, a recent W3C member submis-
sion, straightforwardly extends OWL DL in this spirit. Given an OWL knowledge base,
SWRL allows to extend it by Horn rules using unary and binary atoms representing
classes (concepts) and roles (properties), respectively. This allows, for instance, com-
bined knowledge bases such as the following:

shareFood(W1,W2)← hasDrink(D,W1), hasDrink(D,W2),
Whitewine vWine;
“Trout grilled” ∈ Dish;
(“Trout grilled”, “WelschRiesling”) ∈ hasDrink ,

(3)

where the definition of the role “shareFood” by means of the first rule is not expressible
directly in description logic alone. However, as mentioned above, this freedom comes
at he cost of undecidability in the general case.

On the other extreme, the overcautious approach of allowing interoperability only
on the intersection of description logics and Horn logic seems to be too restricted.

RDFS

 Ontologies (OWL) Rules

RDFS

Ontologies (OWL) Rules

Fig. 3. Integrating Ontologies and Rules by defining “safe interaction” (left) vs. “safe interfaces”
(right)

Grosof et al. [24] have defined this intersection where the logic-programming and
description-logic worlds coincides which they call DLP. However, such an approach
leaves a rule and ontology language with very restrictive expressivity. Layering several
extensions in the direction of logic programming and ASP on top of the DLP fragment
have lead to the Web Rule Language (WRL) [2] proposal, an alternative W3C member
submission.

In the following, we want to take a closer look at approaches which go beyond DLP
but still retain decidability in a more cautious integration than SWRL. Especially, when
we want to combine full description logics with full answer-set programming (i.e., not
only Horn Rules), things become more involved. In principle, the different approaches
in the literature can be divided into two major streams, as described below.

Interaction of ontologies and rules with tight semantic integration. Rules are intro-
duced by adapting existing semantics for rule languages directly in the Ontology Layer.
The DLP fragment on the one end and the undecidable SWRL approach on the other
mark two extremes of this stream. Nonetheless, in between, recently several proposals
have been made to extend expressiveness while still retaining decidability, remarkably
several attempts in the ASP field. Common to these approaches are syntactic restric-
tions of the combined language in a way that guarantees “safe interaction” of the rules
and ontologies parts of the language (see Fig. 3).

The first such approach, AL-Log [12], extends the description logic AL by Horn
rules, but with the additional “safety” restriction that every variable of a rule r must
appear in at least one of the rule atoms occurring in the body of r, where rule atoms are
those predicates which do not appear in the description-logic knowledge base part, but
only in rules. This restriction, which retains decidability, is for instance violated by (3).
The decidability result for such so-called DL-safe rules is extended to a more expressive
description logic SHIQ in [43] bringing us closer to OWL.

Another approach [29] in this direction shows decidability for query answering in
ALCHOQ(t,u) with DL-safe rules by an embedding in extended conceptual logic
programming, a decidable extension of the answer-set semantics by open domains.

The most recent work in this direction [51–53] loosens the safety restriction further,
by allowing non-rule atoms also in rule heads, and also gives a nonmonotonic semantics
for non-Horn rules in the spirit of answer-set programming.

Integration of ontologies and rules with strict semantic separation. In this setting, ASP
should play a central role in the Rules Layer, while OWL/RDF flavors would keep their
purpose of description languages, not aimed at intensive reasoning jobs, in the under-
lying Ontology Layer. The two layers are kept strictly separate and only communicate

via a “safe interface”, but do not impose syntactic restrictions on either the rules or the
ontology part (see again Fig. 3).

From the Rules Layer point of view, ontologies are dealt with as an external source
of information whose semantics is treated separately. Nonmonotonic reasoning and
rules are allowed in a decidable setting, as well as arbitrary mixing of closed and
open world reasoning. This approach typically involves special predicates in rule bod-
ies which allow queries to a description-logic knowledge base, and exchange factual
knowledge, Examples for this type of interaction are [18, 14, 41] and the call of ex-
ternal description-logic reasoners in the TRIPLE [54] rules engine. In the remainder
of this paper, we will focus on nonmonotonic description-logic programs [18, 14] as a
showcase solution among these approaches.

For excellent surveys which classify the numerous proposals for combining rules
and ontologies we refer the interested reader to [4, 46].

5 Nonmonotonic Description-Logic Programs

In this section, we introduce description-logic programs (or simply dl-programs), which
are a novel combination of normal programs and description-logic knowledge bases.

5.1 Syntax

Informally, a dl-program consists of a description-logic knowledge base L and a gener-
alized program P , which may contain queries to L. Roughly, in such a query, it is asked
whether a certain description-logic axiom or its negation logically follows from L or
not.

A dl-query Q(t) is either

(a) a concept inclusion axiom F or its negation ¬F ; or
(b) of the form C(t) or ¬C(t), where C is a concept and t is a term; or
(c) of the form R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom is an expression of the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , (4)

where m≥ 0, and such that each Si is either a concept or a role, opi ∈{], −∪}, pi is
a unary resp. binary predicate symbol, and Q(t) is a dl-query. We call p1, . . . , pm the
input predicate symbols of (4). Intuitively, opi =] (resp., opi = −∪) increases Si (resp.,
¬Si) by the extension of pi.

A dl-rule r has the form (1),8 where any literal b1, . . . , bm ∈B(r) may be a dl-atom.
We denote by B̃+(r) (resp., B̃−(r)) the set of all dl-atoms in B+(r) (resp., B−(r)). A
dl-program KB =(L, P) consists of a description-logic knowledge base L and a finite
set P of dl-rules.

Positive and normal dl-rules are defined like for ordinary programs. A dl-program
KB =(L,P) is positive, if P is “not”-free, and is normal, if rule heads are literals (i.e.,
if l = 1 in (1)).

We illustrate dl-programs in terms of our running example.
8 In [18], only rules with l = 1 are considered; the extension to arbitrary l is straightforward.

Example 11 (Wine program, OWL). Suppose now that an ontology is available, formu-
lated in OWL, which describes information about available wine bottles (as instances of
a concept Wine), and contains (among others) further concepts SweetWine , DryWine ,
RedWine , and WhiteWine for different types of wine. The earlier program is modified
by fetching the wines now from the ontology, using the following rule:

% A suite of wine bottles and their kinds
wineBottle(X)← DL[“Wine”](X).

The isA predicate can then be defined by means of the following rules:

% A suite of wine bottles and their kinds
isA(X, “sweetWine”)← wineBottle(X), DL[“SweetWine”](X);

isA(X, “dryWine”)← wineBottle(X), DL[“dryWine”](X);
isA(X, “redWine”)← wineBottle(X), DL[“redWine”](X);

isA(X, “whiteWine”)← wineBottle(X), DL[“WhiteWine”](X).

However, the isA predicate may be eliminated; instead of

compliantBottle(X, Z)← preferredWine(X, Y), isA(Z, Y),

we may write simply use

compliantBottle(X, Z)← preferredWine(X, c),wineBottle(Z), DL[c](Z),

for each c ∈ {“SweetWine”, “DryWine”, “RedWine”, “WhiteWine”}. The resulting
program is depicted in Fig. 4. Notice that Rules (5)–(12) form a positive normal dl-
program. ut

Example 12 (Wine program, OWL II). Suppose now that we learn that there is a bottle,
“SelaksIceWine”, which is a white wine and not dry. We may add this information to
the logic program using the facts

white(“SelaksIceWine”) and not dry(“SelaksIceWine”).

In our program, we may pass this information to the ontology by adding in the dl-atoms
the operations

“WhiteWine”] white and “DryWine”−∪not dry .

For instance, DL[“Wine”](X) is changed to DL[“WhiteWine”]white, “DryWine”−∪
not dry ; “Wine”](X). ut

5.2 Semantics

We first define Herbrand interpretations and the truth of dl-programs in Herbrand inter-
pretations. In the sequel, let KB =(L, P) be a dl-program.

The Herbrand base of P , denoted HBP , is the set of all ground literals with a
standard predicate symbol that occurs in P and constant symbols in Φ. We denote by
DLP be the set of all ground instances of dl-atoms with constant symbols in Φ.

An interpretation I relative to P is a consistent subset of HBP . We say that I is
a model of `∈HBP under L, denoted I |=L `, iff `∈ I , and of a ground dl-atom a of
form (4) under L, denoted I |=L a, iff L∪

⋃m
i=1 Ai(I) |= Q(t), where

% A suite of wine bottles and their kinds:

wineBottle(X) ← DL[“Wine”](X). (5)

% Persons and their preferences:

person(“axel”); preferredWine(“axel”, “whiteWine”); (6)

person(“gibbi”); preferredWine(“gibbi”, “redWine”); (7)

person(“roman”); preferredWine(“roman”, “dryWine”). (8)

% Available bottles a person likes:

compliantBottle(X, Z)← preferredWine(X, “SweetWine”),wineBottle(Z),
DL[“SweetWine”](Z);

(9)

compliantBottle(X, Z)← preferredWine(X, “DryWine”),wineBottle(Z),
DL[“DryWine”](Z);

(10)

compliantBottle(X, Z)← preferredWine(X, “RedWine”),wineBottle(Z),
DL[“RedWine”](Z);

(11)

compliantBottle(X, Z)← preferredWine(X, “WhiteWine”),wineBottle(Z),
DL[“WhiteWine”](Z).

(12)

% Available bottles a person dislikes:

doesNotLike(X, Z) ← person(X),wineBottle(Z),not compliantBottle(X, Z). (13)

% Generation of multiple answer sets:

bottleChosen(X) ∨ −bottleChosen(X) ← compliantBottle(Y, X). (14)

% Ensuring that each person gets a bottle:

hasBottleChosen(X) ← bottleChosen(X), compliantBottle(X, Z); (15)

← person(X),not hasBottleChosen(X). (16)

Fig. 4. dl-program for wine selection

– for opi =], Ai(I) = {Si(e) | pi(e)∈ I}, and
– for opi = −∪, Ai(I) = {¬Si(e) | pi(e)∈ I}.

We say that I is a model of a ground dl-rule r under L, denoted I |=Lr, iff I |=L

H(r) whenever I |=L l for all l∈B+(r) and I 6|=L l for all l∈B−(r). Furthermore,
I is a model of a dl-program KB =(L, P), denoted I |= KB , iff I |=L r for all
r∈ ground(P). We say that KB is satisfiable (resp., unsatisfiable) iff it has some (resp.,
no) model.

Note that the herein introduced dl-atoms are monotonic: A ground dl-atom a is said
to be monotonic whenever given two interpretations I ′ ⊆ I ′′ it holds that if I ′ |=L a
then I ′′ |=L a as well.

Example 13 (Wine program, OWL, continued). Consider the interpretation

I = {wineBottle(“TaylorPort”), preferredWine(“gibbi”, “redWine”),
isA(“TaylorPort”, “redWine”)},

and the rule r, given by:

isA(“TaylorPort”, “redWine”)← wineBottle(“TaylorPort”),
DL[“RedWine”](“TaylorPort”).

Suppose “RedWine”(“TaylorPort”) is true in the ontology. Then, we have that I |=L

DL[“RedWine”](“TaylorPort”), and hence I |=L r. On the other hand, I 6|=L s,
where s is given by

compliantBottle(“gibbi”, “TaylorPort”)← preferredWine(“gibbi”, “redWine”),
wineBottle(“TaylorPort”),
DL[“RedWine”](“TaylorPort”),

since I contains all atoms in the body of s but not H(s) = compliantBottle(“gibbi”,
“TaylorPort”). ut

Minimal-model semantics of positive dl-programs. We first consider positive dl-pro-
grams. Like for ordinary positive programs, every nondisjunctive positive dl-program
which is satisfiable has a single minimal model, which naturally characterizes its se-
mantics. Observe that, as pointed out above, dl-atoms considered here are monotonic.

For ordinary normal positive programs P , it is well-known that the intersection of
two models of P is also a model of P . A similar result holds for dl-programs.

Theorem 1. Let KB =(L,P) be a normal positive dl-program. If the interpretations
I1, I2⊆HBP are models of KB , then I1 ∩ I2 is also a model of KB .

As an immediate corollary of this result, every satisfiable positive dl-program KB
has a unique least model, denoted MKB , which is contained in every model of KB .

Corollary 1. Let KB =(L,P) be a normal positive dl-program. If KB is satisfiable,
then there is a unique model I ⊆HBP of KB such that I ⊆ J for all models J ⊆HBP

of KB .

Example 14. Consider Rules (5)–(12) in Fig. 4. Combined with the classical wine on-
tology, which is consistent, they have a single minimal model. ut

On the other hand, if a dl-program contains disjunction, then multiple minimal mod-
els of KB may exist.

Example 15. Consider again the program in Fig. 4, and disregard the rules contain-
ing default negation “not”. In the wine ontology, each class RedWine , WhiteWine,
and DryWine has several instances (and some of them have common instances, e.g.,
“TaylorPort”). Therefore, for each of axel , gibbi , and roman , multiple possibilities to
choose a compliant bottle exist. In combination, they give rise to multiple answer sets
of the reduced program. ut

Strong answer-set semantics of dl-programs. We now define the strong answer-set se-
mantics of general dl-programs. It reduces to the minimal model semantics for positive
dl-programs, using a generalized transformation that removes all NAF-literals.

In the sequel, let KB =(L,P) be a dl-program.

Definition 1. The strong dl-reduct of P relative to L and an interpretation I ⊆HBP ,
denoted sP I

L, is the set of all dl-rules obtained from ground(P) by

(i) deleting every dl-rule r such that I|=L ` for some `∈B−(r), and
(ii) deleting from each remaining dl-rule r all literals in B−(r).

Note that (L, sP I
L) is a positive dl-program. Moreover, by Corollary 1, it has a least

model if it is satisfiable and normal.

Definition 2. Let KB =(L, P) be a dl-program. A strong answer set of KB is an in-
terpretation I ⊆HBP such that I is a minimal model of (L, sP I

L).

Example 16 (Wine program, OWL continued). Suppose that the concept RedWine pos-
sesses the instances “TaylorPort” and “ChiantiClassico”, WhiteWine the instance
“SelaksIceWine”, and DryWine the instance “ChateauMargaux”, and assume that
SweetWine is empty. Note that these concepts are all subconcepts of Wine.

Consider the interpretation I which includes, besides the facts in the program, the
following items:

compliantBottle(“axel”, “SelaksIceWine”);
compliantBottle(“gibbi”, “TaylorPort”);
compliantBottle(“gibbi”, “ChiantiClassico”);
compliantBottle(“roman”, “ChateauMargaux”);

bottleChosen(“axel”); bottleChosen(“gibbi”); bottleChosen(“roman”);
hasBottleChosen(“axel”); hasBottleChosen(“gibbi”);
hasBottleChosen(“roman”);

doesNotLike(“axel”, “TaylorPort”);
doesNotLike(“axel”, “ChiantiClassico”);
doesNotLike(“axel”, “ChateauMargaux”);
doesNotLike(“gibbi”, “SelaksIceWine”);
doesNotLike(“gibbi”, “ChateauMargaux”);
doesNotLike(“roman”, “SelaksIceWine”);
doesNotLike(“roman”, “TaylorPort”);
doesNotLike(“roman”, “ChiantiClassico”).

It can be checked that I is a strong answer set of KB . Indeed, I satisfies all positive
rules in P , as well as all rules of form

doesNotLike(p, w)← person(p),wineBottle(w),

stemming from Rule (13) in Fig. 4, for each pair p, w such that compliantBottle(p, w)
is not contained in I . Furthermore, Rule (16) vanishes in the reduction. Thus, I is a
model of (L, sP I

L). Moreover, I is minimal as no facts can be removed from it without
losing modelhood. Therefore, I is an strong answer set of KB . ut

The following result shows that the strong answer-set semantics of a dl-program
KB =(L,P) conservatively extends the ordinary answer-set semantics of P .

Theorem 2. Let KB =(L, P) be a dl-program without dl-atoms. Then, I ⊆HBP is a
strong answer set of KB iff it is an answer set of the ordinary program P .

As desired, strong answer sets of a dl-program KB are also models, and, moreover,
minimal.

Theorem 3. Let KB =(L, P) be a dl-program and let M be a strong answer set of
KB . Then, (a) M is a model of KB , and (b) M is a minimal model of KB .

Proof. (a) Let I be a strong answer set of KB . To show that I is also a model of KB , we
have to show that I |=L r for all r∈ ground(P). Consider any r∈ ground(P). Suppose
that I |=L ` for all `∈B+(r) and I 6|=L ` for all `∈B−(r). Then, the dl-rule r′ that is
obtained from r by removing all the literals in B−(r) is contained in sP I

L. Since I is a
minimal model of (L, sP I

L) and thus in particular a model of (L, sP I
L), it follows that

I is a model of r′. Since I |=L ` for all `∈B+(r′) and I 6|=L ` for all `∈B−(r′)= ∅,
it follows that I |=L `′ for some `′ ∈ H(r). This shows that I |=L r. Also, each rule
r∈ ground(P) having no counterpart in sP I

L is trivially modeled by I since I 6|= B(r).
Hence, I is a model of KB .

(b) By Part (a), every strong answer set I of KB is a model of KB . We show that I
is a minimal model of KB . Towards a contradiction, suppose that there exists a model
J of KB such that J ⊂ I . Since J is a model of KB , it follows that J is also a model
of (L, sP J

L). As every dl-atom in DLP is monotonic relative to KB , it then follows
that sP I

L⊆ sP J
L . Hence, J is also a model of (L, sP I

L). But this contradicts that I is a
minimal model of (L, sP I

L). Hence, I is a minimal model of KB . ut

Note that every normal positive dl-program KB has at most one strong answer set,
which coincides with the single minimal model of KB .

5.3 Further Examples

Closed-world reasoning. As stressed in Section 4, it is acknowledged that many Seman-
tic-Web application scenarios require some form of closed-world reasoning [1, 28].

Using dl-programs, the CWA may be easily expressed on top of an external knowl-
edge base which can be queried through suitable dl-atoms. We show this here for a
description-logic knowledge base L.

Intuitively given a concept C, its negated version C̄ (under CWA) is defined by
adding to a given dl-program the rule

C̄(X)← not DL[C](X)

For example, given that L = {WhiteWine vWine, Wine(“ChiantiClassico”)}, for
concepts WhiteWine and Wine, the CWA infers ¬WhiteWine(“ChiantiClassico”).

As well known, the CWA can lead to inconsistent conclusions. If, in the above
example, L contains further axioms

Wine = WhiteWine t ¬RedWine and
⊥ = WhiteWine u ¬RedWine,

then the CWA infers

WhiteWine(“ChiantiClassico”) and RedWine(“ChiantiClassico”),

which is inconsistent with L.
We can check inconsistency of the CWA with the further rule

fail ← DL[WhiteWine−∪WhiteWine,RedWine−∪RedWine;⊥](b),not fail ,

where ⊥ is the empty concept (entailment of ⊥(b), for any constant b, is tantamount to
inconsistency).

Workarounds to these semantic difficulties are well known in the literature: mini-
mal-model reasoning, or the extended closed-world assumption (ECWA), for instance,
avoid the problem of CWA inconsistency [9, 23]. These extensions can be easily imple-
mented in the framework of dl-programs, by means of a suitable encoding that computes
minimal models of a knowledge base L. Intuitively, building minimal models of L cor-
responds to concluding as much negative facts as possible while keeping consistency.

Default reasoning. By maximizing rather than minimizing extensions, default reason-
ing, as in the approach by Poole [48], on top of a description-logic knowledge base may
be supported. The rationale is to associate to individuals default values for concept and
roles. Default information is maximized, in the sense that it is propagated as much as
possible unless inconsistency arises.

Although acknowledged as being essential for modeling reasoning in the Semantic-
Web context (see, e.g., [3]), description-logic knowledge bases do not allow nonmono-
tonic inheritance. This often causes many ontology design problems, especially in those
cases where overriding some default-concept property value is the most natural way of
defining a subclass. Defaults are especially tailored at implementing nonmonotonic in-
heritance. For example, the rules

shouldbewhite(W)← DL[sparklingWine](W),not nonwhite(W),
nonwhite(W)← DL[WhiteWine] shouldbewhite;¬WhiteWine](W)

on top of a part, L, of the wine ontology express that sparkling wines are white by
default. Given

L = { sparklingWine(“VeuveCliquot”),
(sparklingWine u ¬whiteWine)(“Lambrusco”)},

we then can conclude white(“VeuveCliquot”) and nonwhite(“Lambrusco”).

5.4 Additional Features of dl-Programs

An interesting fragment of dl-programs are stratified dl-programs, which are, intu-
itively, composed of hierarchic layers of positive dl-programs linked via default nega-
tion. This generalization of the classic notion of stratification embodies a fragment of
the language having single answer sets. Semantics for programs (or sub-programs) be-
longing to this fragment can be evaluated at a less expensive computational cost [15].

Furthermore, it is possible to evaluate dl-programs either under weak answer-set
semantics [18] and a well-founded semantics [19]. The former does not make any as-
sumption on the nature of a dl-atom (whereas monotonic dl-atoms are treated explicitly
in the semantics discussed here), while the latter is a generalization of the traditional
well-founded semantics [56] for dl-programs.

5.5 Prototype Implementation

A fully operational prototype, named NLP-DL, ready for experiments, is available via
a Web interface at

http://www.kr.tuwien.ac.at/staff/roman/semweblp/

The system accepts nondisjunctive dl-programs as input,9 given by an ontology formu-
lated in OWL DL (as processed by RACER [26]) and a set of dl-rules in the language
above, where ←,], and −∪, are written as “:-”, “+=”, and “–=”, respectively. The fol-
lowing reasoning tasks are featured:

(i) Computing models (answer sets or the well-founded model) of a given dl-program:
For computing the answer sets, a preliminary computation of the well-founded
model may be issued, which semantically approximates the answer sets—this is
exploited for optimization.

(ii) Evaluating a given query on a given dl-program: Under the answer-set semantics,
both brave reasoning and cautious reasoning are available.

The system architecture integrates the external DLV [36] and RACER engines, the
latter being embedded into a caching module, a well-founded semantics module, an
answer-set semantics module, a pre-processing module, and a post-processing module.

Each internal module has been implemented using the PHP scripting language; the
overhead is insignificant, provided that most of the computing power is devoted to the
execution of the two external reasoners. In particular, efficient usage of RACER is
critical for the system performance. Respective techniques, mainly based on caching
query results and exploiting monotonicity of description-logic reasoning, are described
in [15].

6 Extensions

Example 17 (Motivating Example, Part III). Now that a machinery, automatically gen-
erating a selection of wine bottles for the social dinner, is ready, the organizers wonder
whether it is possible to accomplish this task in a better way. After all, the Semantic
Web envisions a world where machine-to-machine protocols express their full poten-
tial, and people are freed from most annoying jobs. In this context, multiple domain
descriptions (i.e., multiple ontologies), possibly with differing semantics, may interact
closely and have to be ready for information exchange.

9 An implementation of disjunctive dl-programs is available through dlvhex, an implementation
of HEX-programs (see next section for details about HEX-programs and dlvhex).

For instance, most of the attendees may have his or her own FOAF [21] descrip-
tion on-line. These description might potentially publish all the public data about an
attendee, including his or her preferred wine. However, now the organizers notice that
they need some formalism powerful enough to interface several formalisms and multi-
ple ontologies at once. ut

6.1 HEX-programs

HEX-programs generalize dl-programs with regard to the following features:

– The notion of a dl-atom is generalized to that of an external atom. The latter kind
of atom may bind knowledge coming from different external formalisms, with pos-
sibly differing semantics. Also, an external atom can delegate special tasks to tra-
ditional programs (such as string processing), for which logic programming is not
tailored at. For instance, it is possible to merge RDF ontologies with OWL ontolo-
gies, as in the following small program:

triple(X, Y, Z)← url(U),&rdf [U](X, Y, Z);
← &DLinconsistent [triple].

Also, possible external sources of knowledge can be merged with arbitrary strate-
gies, and can bring in new symbols not appearing elsewhere in a given program
(“value invention”).

– It is made possible to quantify over sets of concepts just as it is done with in-
dividuals, and to freely exchange the former objects with the latter ones. These
meta-reasoning features are enabled by means of higher-order atoms, such as in
the rule

“wine:Wine”(X)← triple(X, “rdf:type”, “wine:Wine”).

– Logic programs are made compatible with naming conventions employed in the
Semantic-Web world. Thus, a directive such as

#namespace(wine, “http://www.w3.org/TR/2003/
PR-owl-guide-20031209/wine#”)

allows to interpret the constant symbol “wine:Wine” as a shortcut for the symbol

“http://www.w3.org/TR/2003/PR-owl-guide-20031209/
wine#Wine”.

In this section, we briefly discuss HEX-programs; for further details, see [14].

6.2 Syntax and Semantics

HEX-programs are built on mutually disjoint sets C, X , and G of constant names, vari-
able names, and external predicate names, respectively. Unless stated otherwise, ele-
ments from X (resp., C) are denoted with first letter in upper case (resp., lower case);

elements from G are prefixed with “ & ”.10 Constant names serve both as individual and
predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is its arity. Intuitively, Y0 is the
predicate name; we thus also use the familiar notation Y0(Y1, . . . , Yn). The atom is
ordinary, if Y0 is a constant. For example, (x, rdf :type, c) and node(X) are ordinary
atoms, while D(a, b) is a higher-order atom. An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output
list, respectively), and &g ∈ G is an external predicate name. We assume that &g has
fixed lengths in(&g) = n and out(&g) = m, respectively. Intuitively, an external
atom provides a way for deciding the truth value of an output tuple depending on the
extension of a set of input predicates.

Example 18. The external atom &reach[edge, a](X) may compute the nodes reachable
in the graph edge from the node a. Here, in(&reach)= 2 and out(&reach) = 1. 2

A HEX-program, P , is a finite set of rules of form (1), where literals in the heads of
rules are (higher-order) atoms, and literals in the bodies of rules contain either (higher-
order) atoms or external atoms.

The semantics of HEX-programs generalizes the answer-set semantics [22], and is
defined using the FLP-reduct [20], which is more elegant than the traditional reduct and
ensures minimality of answer sets.

The Herbrand base of a HEX-program P , denoted HBP , is the set of all possi-
ble ground versions of atoms and external atoms occurring in P obtained by replacing
variables with constants from C. The grounding of a rule r, ground(r), is defined ac-
cordingly, and the grounding of program P is ground(P) =

⋃
r∈P ground(r).

Example 19. For C = {edge, arc, a, b}, ground instances of E(X, b) are, for instance,
edge(a, b), arc(a, b), and arc(arc, b); ground instances of &reach[edge, N](X) are
&reach[edge, edge](a), &reach[edge, arc](b), and &reach[edge, edge](edge), etc. ut

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We
say that I is a model of atom a∈HBP , denoted I |= a, if a∈ I . With every external
predicate name &g ∈ G we associate an (n+m+1)-ary Boolean function f&g (called
oracle function) assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where
n = in(&g), m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that I ⊆ HBP is a
model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm), denoted I |= a, iff
f&g(I, y1 . . ., yn, x1, . . . , xm) = 1.

Example 20. Associate with the external predicate name &reach a function f&reach

such that f&reach(I, E, A,B) = 1 iff B is reachable in the graph E from A. Let
I = {e(b, c), e(c, d)}. Then, I is a model of the external atom &reach[e, b](d) since
f&reach(I, e, b, d) = 1. 2

10 In [14], “ # ” is used instead of “ & ”; the change is motivated to be in accord with the syntax
of the prototype system.

Let r be a ground rule. We define (i) I |=H(r) iff there is some a ∈ H(r) such
that I |= a, (ii) I |=B(r) iff I |= a for all a∈B+(r) and I 6|= a for all a∈B−(r), and
(iii) I |= r iff I |=H(r) whenever I |=B(r). We say that I is a model of a HEX-program
P , denoted I |=P , iff I |= r for all r∈ ground(P).

The FLP-reduct [20] of P with respect to I ⊆HBP , denoted fP I , is the set of all
r ∈ ground(P) such that I |= B(r). I ⊆HBP is an answer set of P iff I is a minimal
model of fP I .

Differences between the FLP-reduct and the strong dl-reduct. The two above semantics
are not equivalent in the presence of nonmonotonic external atoms, where the notion of
monotonicity for an external atom generalizes that for dl-atoms. Let us assume to have
an external predicate &neg , defined in such a way that the ground atom &neg [p](a)
satisfies I 6|= &neg [p](a) whenever an interpretation I is such that I |= p(a) (i.e., &neg
reproduces the behavior of the usual negation as failure). The program P , consisting of
the single rule

p(a)← not &neg[p](a),

has S1 = {p(a)} as a strong answer set. However, also S2 = ∅ is a strong answer set
of P , thus S1 is not minimal. It is often desirable that answer sets are incomparable as
in the above case: intuitively, self-supportedness of an atom such as in the rule p(a)←
p(a) should not give evidence of the truth of p(a).

The FLP-reduct overcomes these drawbacks. Indeed, it can be proven that this
reduct produces only incomparable answer sets: under FLP semantics, S1 is not an
answer set.

6.3 Further Examples

With HEX-programs, it is possible to extract information from different sources in the
same program.

Assume we want to invite all friends of Axel Polleres for dinner, and that their wine
preferences are given by means of their FOAF descriptions. To this end, we introduce
the &rdf atom for dealing with RDF sources, and the &dlC atom that mimics partially
the semantics of a dl-atom. An atom &rdf [u](s, p, o) is true if 〈s p o〉 is an RDF triple
asserted at URI u. Also, &dlC [u, c](x) is true if x is an individual which can be proved
to belong to class c in the knowledge base located at URI u (under OWL semantics).

First, namespace directives allow us to deal with individuals and concepts (constant
symbols) coming from different Web sources:

#namespace(wine, “http://www.w3.org/TR/2003/
PR-owl-guide-20031209/wine#”);

#namespace(foaf , “http://xmlns.com/foaf/0.1/”);

#namespace(rdf , “http://www.w3.org/1999/02/
22-rdf-syntax-ns#”);

#namespace(foafplus, “http://www.example.org/foafplus#”);

#namespace(rdfs, “http://www.w3.org/2000/01/rdf-schema#”).

<foaf:PersonalProfileDocument rdf:about="">
<foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me"/>
...

</foaf:PersonalProfileDocument>

<foaf:Person rdf:ID="me">
<foaf:name>Axel Polleres</foaf:name>
...
<foaf:knows>

<foaf:Person>

<foaf:name>Giovambattista Ianni</foaf:name>
<foaf:mbox>ianni@mat.unical.it</foaf:mbox>
<rdfs:seeAlso rdf:resource=
"http://www.gibbi.com/test_foaf.gibbi.rdf"/>

</foaf:Person>
</foaf:knows>

...
<foafplus:winePreference rdf:resource="&vin;SweetWine"/>

</foaf:Person>

Fig. 5. An example FOAF description, extended with the foafplus:winePreference property

Suppose now that a FOAF description is given, like in Fig. 5. This FOAF description is
enriched with the property foafplus:winePreference which expresses a wine
preference for a given person. This small description can be interfaced with a HEX-
program in the following way:

Y (X, Z, triple)← &rdf [U](X, Y, Z), foafurl(U);
T (X, triple)← “rdf:type”(X, T, triple).

The above rules materialize the RDF triples contained in Axel’s FOAF description.
Then, the predicate preferredWine is now computed by extracting data from ex-

ternal descriptions of Axel’s friends (note that further external ontologies are consulted
whose locations depend on the first consulted ontology):

mainEntity(M, triple)← “foaf:primaryTopic”(X, M, triple),
“foaf:PersonalProfileDocument”(X, triple);

community(A, Y)← “foaf:knows”(X, A, triple),
“rdfs:seeAlso”(A, Y, triple);

preferredWine(M,Y)← “foafplus:winePreference”(M,Y, triple),
mainEntity(M, triple);

preferredWine(X, Y)← community(X, U),
&rdf [U](,“foafplus:winePreference”, Y).

The next rule facilitates the quantification over concept names given to the predicate
&dlC:

compliantBottle(X, Z)← wineurl(U), preferredWine(X, Y),
&dlC [U, Y](Z).

Note that this rule allows to generalize, for instance, Rules (9)–(12) of the program
given in Fig. 4. The rest of the program is very similar to the latter one:

bottleChosen(X) ∨ −bottleChosen(X)← compliantBottle(Y, X);
hasBottleChosen(X)← bottleChosen(Z), compliantBottle(X, Z);

← preferredWine(X, Y),not hasBottleChosen(X);
:∼ bottleChosen(X) [1].

6.4 Prototype Implementation

An experimental prototype for evaluating HEX-programs, called dlvhex, is available and
executable on the Web at

http://www.kr.tuwien.ac.at/research/dlvhex/

Apart from implementing the semantics of HEX-programs, dlvhex supports a number
of built-in functions as well as integrity and weak constraints. Its further development
is work in progress.

The principle behind dlvhex is to represent a framework that integrates a native
answer-set solver—here, DLV [36]—and the external reasoners underlying the external
atoms. Optionally, dlvhex can integrate DLT [10] as a pre-parser to allow for templates
and frame syntax within HEX-programs. Due to the bidirectional nature of external
atoms, they cannot be evaluated prior to calling the answer-set solver. Instead, dlvhex
builds the dependency graph of the HEX-program, identifying minimal sets of nodes that
involve external atoms, which have to be solved by specifically tailored algorithms. This
strategy, which is described in more detail in [16] and [17], relies basically on a modified
version of the well-known splitting-set theorem for ordinary logic programs [40].

The evaluation functions of the external atoms are defined completely independent
from dlvhex by so called plug-ins, which can contain the implementations of several
atoms. The currently available external atoms are the RDF Plug-in, the Description-
Logics Plug-in and the String Plug-in, described below.

The RDF Plug-in The RDF plug-in currently provides a single external atom, the
&rdf atom, which enables the user to import RDF triples from any RDF knowl-
edge base. It takes a single constant as input, which denotes the RDF source (a file
path or a Web address). The &rdf atom interfaces with the RAPTOR RDF library.

The Description-Logics Plug-in In order to model dl-programs [18] in terms of HEX-
programs, the Description-Logics Plug-in has been developed. This plug-in in-
cludes three external atoms (these atoms, in accord to the semantics of dl-programs,
also allow for extending a description-logic knowledge base, before submitting a
query, by means of the atoms’ input parameters):

– the &dlC atom, which queries a concept (specified by an input parameter of
the atom) and retrieves its individuals;

– the &dlR atom, which queries an object property and retrieves its individual
pairs;

– the &dlDR atom, which queries a datatype property and retrieves its pairs; and
– the &dlConsistent atom, which tests the (possibly extended) description-logic

knowledge base for consistency.

The Description-Logics Plug-in can access OWL ontologies, i.e., description-logic
knowledge bases in the language SHOIN (D), utilizing the RACER [26] reason-
ing engine.

The String Plug-in The task of the String Plug-in is to realize simple string manipula-
tions.

Currently, dlvhex, together with the presented plug-ins, are available as source pack-
ages. Moreover, a toolkit for developing custom plug-in is supplied as well, embedded
in the GNU auto-tools environment, which takes care for the low-level, system-specific
build process and which allows the plug-in author to concentrate his or her efforts on
the implementation of the plug-in’s actual core functionality.

7 Discussion and Conclusion

We have considered reasoning with rules and ontologies, taking an answer-set program-
ming perspective. A number of approaches for combining rules and ontologies have
been presented so far, and the quest for the Holy Grail of an ideally suited formalism
(which might not exist) is still ongoing. As we have briefly discussed, a number of is-
sues come up when combining rules as in logic programming and ontologies formalized
in classical logic. Bridging the quite different worlds of logic programs and ontologies
has been attempted in different approaches, which may be grouped in “tightly” coupled
and “loosely” coupled approaches.

The approach which is closest in spirit to dl-programs is Rosati’s DL+log formal-
ism [52, 53], which extends his previous work [50, 51]. In this approach, predicates are
split into ontology predicates and into logic-program (datalog) predicates. A notion of
model of a combined rule and ontology knowledge base is defined using a two-step
reduct in which, in the first step, the ontology predicates are eliminated under the open-
world assumption (OWA) and, in the second step, the negated logic-programming pred-
icates under the closed-world assumption (CWA). As shown by Rosati, the emerging
formalism (which focuses on first-order models under the standard-names assumption),
is decidable provided that conjunctive-query answering over the underlying ontology is
decidable. The main differences between DL+log and dl-programs are as follows:

– DL+log is a tight coupling, while dl-programs provide a loose coupling of rules
and ontologies.

– While extensions of dl-programs to integrate ontologies even in different formats
are straightforward, there is no corresponding counterpart in DL+log .

– The approach of dl-atoms is more flexible for mixing different reasoning modali-
ties, such as consistency checking and logical consequence. In the realm of HEX-
programs, almost arbitrary combinations can be conceived.

– The coupling as realized in dl-programs aims at facilitating interoperability of ex-
isting reasoning systems and software (such as DLV and RACER). On the other
hand, the loose coupling requires a bridging between the two worlds of ontologies
and rules, which has to be provided by the user. In particular, this applies to the
individuals at the instance level.

The development and theoretical study of HEX-programs is ongoing. Algorithms
and techniques for efficient implementation are in an advanced stage of progression. In
a sense, rules are per se a form or knowledge that needs to be exchanged and evaluated
under different semantics. To this end, we are developing an exchange format aimed at
fitting answer-set programming in the RuleML standard. In conclusion, although quite
some efforts have been spent on combining rules and ontologies, there is still a lot of
work to be done.

References

1. A. Analyti, G. Antoniou, C. V. Damásio, and G. Wagner. Stable Model Theory for Extended
RDF Ontologies. In Proc. Fourth International Semantic Web Conference (ISWC 2005), pp.
21–36, 2005.

2. J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, R. Krummenacher,
H. Lausen, A. Polleres, and R. Studer. Web Rule Language (WRL), Sept. 2005. W3C
Member Submission, http://www.w3.org/Submission/WRL/.

3. G. Antoniou. Nonmonotonic Rule Systems on Top of Ontology Layers. In Proc. First
International Semantic Web Conference (2002), volume 2342 of Lecture Notes in Computer
Science (LNCS), pp. 394–398, 2002.

4. G. Antoniou, C. V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and
P. F. Patel-Schneider. Combining Rules and Ontologies: A survey. Technical Report
IST506779/Linköping/I3-D3/D/PU/a1, Linköping University, February 2005. IST-2004-
506779 REWERSE Deliverable I3-D3. http://rewerse.net/publications/.

5. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

6. C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, UK, 2003.

7. T. Berners-Lee. Web for Real People, April 2005. Keynote Speech at the 14th World
Wide Web Conference (WWW2005). Slides available at http://www.w3.org/2005/
Talks/0511-keynote-tbl/.

8. F. Buccafurri, N. Leone, and P. Rullo. Enhancing Disjunctive Datalog by Constraints. IEEE
Transactions on Knowledge and Data Engineering, 12(5):845–860, 2000.

9. M. Cadoli and M. Lenzerini. The Complexity of Propositional Closed World Reasoning and
Circumscription. Journal of Computer and System Sciences, 43:165–211, April 1994.

10. F. Calimeri, G. Ianni, G. Ielpa, A. Pietramala, and M. C. Santoro. A System with Template
Answer Set Programs. In Proc. Ninth European Conference on Artificial Intelligence (JELIA
2004), volume 3229 of Lecture Notes in AI (LNAI), pp. 693–697. Springer Verlag, 2004.

11. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Ref-
erence, Feb. 2004. W3C Recommendation.

12. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and
Description Logics. Journal of Intelligent Information Systems (JIIS), 10(3):227–252, 1998.

13. The 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service
(EEE-05) contest. http://www.comp.hkbu.edu.hk/∼eee05/contest/.

14. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In Proc. 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2005). Morgan Kaufmann, 2005.

15. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Nonmonotonic Description Logic Pro-
grams: Implementation and Experiments. In F. Baader and A. Voronkov, editors, Proc.
Eleventh International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2004), number 3452 in LNCS, pp. 511–527. Springer, 2005.

16. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective Integration of Declarative Rules
with External Evaluations for Semantic Web Reasoning. In Y. Sure and J. Domingue, editors,
Proc. Third European Semantic Web Conference (ESWC 2006), number 4011 in LNCS, pp.
273–287. Springer, 2006.

17. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Towards Efficient Evaluation of HEX
Programs. In J. Dix and A. Hunter, editors, Proc. Eleventh International Workshop on Non-
monotonic Reasoning (NMR 2006), Answer Set Programming Track, pp. 40–46, 2006.

18. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-
ming with Description Logics for the Semantic Web. In Proc. Ninth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR2004), pp. 141–151,
2004.

19. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-Founded Semantics for De-
scription Logic Programs in the Semantic Web. In Proc. ISWC 2004 Workshop on Rules
and Rule Markup Languages for the Semantic Web (RuleML 2004), volume 3323 of Lecture
Notes in Computer Science (LNCS), pp. 81–97. Springer Verlag, 2004.

20. W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In Proc. Ninth European Conference on Artificial Intelligence
(JELIA 2004), number 3229 in Lecture Notes in AI (LNAI), pp. 200–212. Springer Verlag,
2004.

21. The Friend of a Friend (FOAF) Project. http://www.foaf-project.org/.
22. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing, 9:365–385, 1991.
23. M. Gelfond, H. Przymusinska, and T. C. Przymusinski. The Extended Closed World As-

sumption and its Relationship to Parallel Circumscription. In Proc. Fifth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems (PODS ’86), pp. 133–139, 1986.

24. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proc. Twelfth International World Wide Web
Conference (WWW 2003), pp. 48–57, 2003.

25. T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5:199–220, 1993.

26. V. Haarslev and R. Möller. RACER System Description. In Proc. First International Joint
Conference on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Com-
puter Science (LNCS), pp. 701–705. Springer Verlag, 2001.

27. P. Hayes. RDF semantics. http://www.w3.org/TR/rdf-mt/.
28. J. Heflin and H. Munoz-Avila. LCW-Based Agent Planning for the Semantic Web. In Proc.

AAAI Workshop on Ontologies and the Semantic Web, pp. 63–70, 1998.

29. S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Nonmonotonic Ontological and Rule-
Based Reasoning with Extended Conceptual Logic Programs. In Proc. Second European
Semantic Web Conference (ESWC 2005), volume 3532 of Lecture Notes in Computer Science
(LNCS), pp. 392–407. Springer Verlag, 2005.

30. S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Preferential Reasoning on a Web of
Trust. In Proc. Fourth International Semantic Web Conference (ISWC 2005), volume 3729
of Lecture Notes in Computer Science (LNCS), pp. 368–382. Springer Verlag, 2005.

31. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, May 2004. W3C Member
Submission. http://www.w3.org/Submission/SWRL/.

32. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description
Logics. Logic Journal of the IGPL, 8(3):239–264, 2000.

33. ICONS homepage, since 2001. http://www.icons.rodan.pl/.
34. T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J.-H. You. Unfolding Partiality and Dis-

junctions in Stable Model Semantics. ACM Transactions on Computational Logic, 7(1):1–
37, 2006.

35. N. Leone, G. Gottlob, R. Rosati, T. Eiter, W. Faber, M. Fink, G. Greco, G. Ianni, E. Kałka,
D. Lembo, M. Lenzerini, V. Lio, B. Nowicki, M. Ruzzi, W. Staniszkis, and G. Terracina. The
INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In Proc.
24th ACM SIGMOD International Conference on Management of Data (SIGMOD 2005),
pp. 915–917. ACM Press, 2005.

36. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computa-
tional Logic, 2005. To appear. Available at http://www.arxiv.org/ps/cs.AI/
0211004.

37. A. Y. Levy and M.-C. Rousset. Combining Horn Rules and Description Logics in CARIN.
Artificial Intelligence, 104(1-2):165–209, 1998.

38. Y. Lierler. Disjunctive Answer Set Programming via Satisfiability. In Proc. Eighth Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005),
volume 3662 of Lecture Notes in Computer Science (LNCS), pp. 447–451. Springer Verlag,
2005.

39. V. Lifschitz. Answer Set Planning. In Proc. 16th International Conference on Logic Pro-
gramming (ICLP ’99), pp. 23–37. MIT Press, 1999.

40. V. Lifschitz and H. Turner. Splitting a Logic Program. In Proc. Eleventh International
Conference on Logic Programming (ICLP ’94), pp. 23–38. MIT Press, 1994.

41. T. Lukasiewicz. Stratified Probabilistic Description Logic Programs. In Proc. ISWC 2005
Workshop on Uncertainty Reasoning for the Semantic Web, pp. 87–97, 2005.

42. W. Marek and M. Truszczyński. Stable Logic Programming - An Alternative Logic Program-
ming Paradigm. In K. Apt, W. Marek, and M. Truszczyński, editors, The Logic Programming
Paradigm, pp. 375–398. Springer Verlag, 1999.

43. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. Journal of
Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41–60, 2005.

44. I. Niemelä. Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

45. I. Niemelä, P. Simons, and T. Soininen. Stable Model Semantics of Weight Constraint Rules.
In Proc. Fifth International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR ’99), volume 1730 of Lecture Notes in AI (LNAI), pp. 107–116. Springer Verlag,
1999.

46. J. Z. Pan, E. Franconi, S. Tessaris, G. Stamou, V. Tzouvaras, L. Serafini, I. R. Horrocks,
and B. Glimm. Specification of Coordination of Rule and Ontology Languages. Project
Deliverable D2.5.1, KnowledgeWeb NoE, June 2004.

47. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Semantics
and Abstract Syntax, Feb. 2004. W3C Recommendation.

48. D. Poole. A Logical Framework for Default Reasoning. Artificial Intelligence, 36:27–47,
1988.

49. A. Rainer. Web Service Composition under Answer Set Programming. In Proc. KI 2005
Workshop ”Planen, Scheduling und Konfigurieren, Entwerfen” (PuK 2005), 2005.

50. R. Rosati. Towards Expressive KR Systems Integrating Datalog and Description Logics:
Preliminary Report. In Proc. 1999 International Workshop on Description Logics (DL ’99),
volume 22 of CEUR Workshop Proceedings, pp. 160–164. CEUR-WS.org, 1999.

51. R. Rosati. On the Decidability and Complexity of Integrating Ontologies and Rules. Journal
of Web Semantics, 3(1):61–73, 2005.

52. R. Rosati. DL+log: Tight Integration of Description Logics and Disjunctive Datalog. In
Proc. Tenth International Conference on Principles of Knowledge Representation and Rea-
soning (KR 2006), pp. 68–78. AAAI Press, 2006.

53. R. Rosati. Reasoning with Rules and Ontologies. In P. Barahona, F. Bry, E. Franconi, U. Sat-
tler, and N. Henze, editors, Reasoning Web, Second International Summer School 2006, Liss-
abon, Portugal, September 25-29, 2006, Tutorial Lectures, Lecture Notes in Computer Sci-
ence (LNCS). Springer Verlag, 2006. This volume.

54. M. Sintek and S. Decker. TRIPLE - A Query, Inference, and Transformation Language for
the Semantic Web. In Proc. First International Semantic Web Conference (ISWC 2002),
volume 2342 of Lecture Notes in Computer Science (LNCS), pp. 364–378, 2002.

55. D. Tsarkov and I. Horrocks. Fact++ Description Logic Reasoner: System Description. In
Proc. Third International Joint Conference on Automated Reasoning (IJCAR 2006), 2006.

56. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for General
Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

57. W3C. The Resource Description Framework. http://www.w3.org/RDF/.
58. K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and Aligning Ontologies in

dl-Programs. In Proc. First International Conference on Rules and Rule Markup Languages
for the Semantic Web (RuleML 2005), pp. 160–171, 2005.

59. K. Wang, D. Billington, J. Blee, and G. Antoniou. Combining Description Logic and De-
feasible Logic for the Semantic Web. In Proc. ISWC 2004 Workshop on Rules and Rule
Markup Languages for the Semantic Web (RuleML 2004), volume 3323 of Lecture Notes in
Computer Science (LNCS), pp. 170–181. Springer Verlag, 2004.

60. ASPLIB: The Answer Set Programming Satisfiability Library. http://dit.unitn.
it/∼wasp/Solvers/index.html.

61. WASP homepage, since 2002. http://wasp.unime.it/.
62. The Wine Ontology. http://www.w3.org/TR/owl-guide/wine.rdf.
63. S. Woltran. Answer Set Programming: Model Applications and Proofs-of-Concept. Tech-

nical Report WP5, Working Group on Answer Set Programming (WASP, IST-FET-2001-
37004), July 2005. Available at http://www.kr.tuwien.ac.at/projects/
WASP/report.html.

