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Reactivity on the Web is an emerging research issue covering: updating data on the
Web, exchanging information about events (such as executed updates) between Web
sites, and reacting to combinations of such events. Reactivity plays an important role
for upcoming Web systems such as online marketplaces, adaptive Web and Semantic
Web systems, as well as Web services and Grids. This article introduces the paradigms
upon which the high-level language XChange for programming reactive behaviour and
distributed applications on the Web relies. Then, it briefly presents the main syntactical
constructs of XChange and their declarative and operational semantics.
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1 Introduction

Many resources on the Web and the Semantic Web are dynamic in the sense that they can
change their content over time. The need for changing (updating) data on the Web has
several reasons: new information comes in, calling for insertions of new data; information is
out-of-date, calling for deletions and replacements of data. Such changes need to be mirrored
by other Web resources whose data depends on the initial changes. In other words, updates
need to be propagated over related Web resources.

Reactivity on the Web is the ability of Web sites to detect happenings, or events, of
interest that have occurred on the Web and to automatically react to them through reactive
programs. Events may have various levels of abstraction ranging from low-level ones, such
as insertions into XML or RDF documents, to high-level application-dependent ones. For
example, in a tourism application, events of interest include delays or cancellations of flights,
and new discounts for flights offered by an airline. Reactions to such events include notifying
colleagues about delays, looking for and booking another flight, or booking flights from a
particular airline.

Following a declarative approach to reactivity on the Web, a novel reactive, rule-based
language called XChange [12, 6, 13, 5, 14, 20, 30] has been developed. XChange provides
the following benefits over the conventional approach of using general-purpose programming
languages like Java to implement reactive behaviour on the Web:

(i) XChange reactive rules have a highly declarative nature. They allow programming on
a high level of abstraction, and are easy to analyse for both humans and machines (e.g.
for optimisation, verification, or termination).

(ii) The various parts of a rule all follow the same paradigm of specifying patterns for XML
data, thus making XChange an elegant, easy to learn language.
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(iii) Both atomic and composite events can be detected and relevant data extracted from
events. Composite events, temporal combinations of events, are an important require-
ment in composing an application from different services.

(iv) XChange embeds an XML query language, Xcerpt, allowing to access Web resources
and reason with their data in a natural way.

(v) A typical reaction to some event is to update some Web resource; XChange provides an
integrated XML update language for doing this.

(vi) XChange reactive rules enforce a clear separation of persistent data (Web resources)
and volatile data (events). The distinction is important for programmers: the former
relates to state, while the latter reflects changes in state.

(vii) XChange’s high abstraction level and its powerful constructs allow for short and compact
code. The programmer is released from programming tasks like access to or modification
of data (events, Web resources) “manually”.

This article is an extended and enhanced version of [13]. (In particular, Section 5 has no
counterpart in [13].) Section 2 introduces the paradigms upon which the high-level, reactive
language XChange relies. Section 3 gives a brief introduction into the Web query language
Xcerpt, which is embedded in XChange. Section 4 subsequently describes the core language
constructs of XChange, accompanied by examples. Section 5 provides declarative and oper-
ational semantics. Section 6 discusses related work on the topic of reactivity on the Web.
Finally, Section 7 concludes with a summary and perspectives for future research.

2 XChange: Paradigms

Clear paradigms that a programming language follows provide a better language understand-
ing and ease programming. Moreover, explicitly stated paradigms are essential for Web
languages, since these languages should be easy to understand and use also by novice practi-
tioners. This section introduces the paradigms upon which the language XChange relies.

2.1 Event vs. Event Query

An event is a happening to which each Web site may decide to react in a particular way or
not to react to at all. For example, an insertion of new discounts for flights or just ”8 o’clock
every morning” are events. One might argue that defining an event in such a way is too
vague. The intention here is to emphasise that one can conceive every kind of changes on the
Web as events. However, each Web-based reactive system can be interested in different types
of events or in different combinations of (like a given temporal order between) such events.
Thus, the large spectra of possible events are always filtered relatively to one’s interests (e.g.
the owner of a personal travel organiser). In order to notify Web sites about events and to
process event data, events need to have a data representation. In XChange, incoming events
are represented as XML documents (see Section 4).

Event queries are queries against event data. Event query specifications differ consider-
ably from event representations (e.g. event queries may contain variables for selecting parts
of the events’ representation). Most proposals dealing with reactivity do not significantly dif-
ferentiate between event and event query. Overloading the notion of event precludes a clear
language semantics and thus, makes the implementation of the language and its usage much
more difficult. Event queries in XChange serve a double purpose: detecting events of interest
and temporal combinations of them, and selecting data items from events’ representation.
This double purpose is novel in the field of reactivity and reactive rules.

2.2 Volatile vs. Persistent Data

The development of the XChange language – its design and its implementation – reflects the
novel view over the Web data that differentiates between volatile data (event data communi-
cated on the Web between XChange programs) and persistent data (data of Web resources,
such as XML or HTML documents). One can imagine volatile data as speech and persis-
tent data as (computer-)written text. Speech cannot be modified. If one has communicated
some information in this way he/she can correct, complete, or invalidate what he/she has
told – through further speech. In contrast, written text can be updated in the usual sense.
Likewise, volatile data (i.e. events) is not updatable but persistent data (i.e. Web content) is
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updatable. To inform about, correct, complete, or invalidate former volatile data, new event
messages (i.e. data containing information about events that have occurred) are communi-
cated between Web sites. The clear distinction between volatile and persistent data aims at
easing programming and avoiding the emergence of a parallel Web of events.

2.3 Rule-Based Language

Reactivity can be specified and realised by means of reactive rules [19, 29, 34]. XChange is a
rule-based language that uses reactive rules for specifying the desired reactive behaviour and
deductive rules for constructing views over Web resources’ data.

An XChange program is located at one Web site and contains reactive rules, more precisely
Event-Condition-Action rules (ECA rules) of the form Event query – Web query – Action.
Every incoming event is queried using the event query (query against volatile data). If an
answer is found and the Web query (query to persistent data) has also an answer, then the
Action is executed. The fact that the event query and the Web query have answers (i.e.
evaluate successfully) determines the rule to be fired; the answers influence the action to be
executed, as information contained in the answers are generally used in the action part.

XChange embeds the Web query language Xcerpt for expressing the Web query part of
reactive rules and for specifying deductive rules in XChange programs. Xcerpt (deductive)
rules allow for constructing views over (possibly heterogeneous) Web resources that can be
further queried in the Web query part of XChange reactive rules.

2.4 Pattern-Based Approach

XChange is a pattern-based language: event queries, Web queries, event raising specifications,
and updates describe patterns for events requiring a reaction, Web data, raising event mes-
sages, and updating Web data, respectively. Patterns are templates that closely resemble the
structure of the data to be queried, constructed, or modified, thus being very intuitive and
also straight-forward to visualise [8].

2.5 Communication Paradigms

Peer-to-Peer Model With XChange, the communication between Web sites is based on a
peer-to-peer communication model, i.e. all parties have the same capabilities and every party
can initiate a communication session. Event messages, notifications containing data of events
that have occurred on the Web, are directly communicated between Web sites without a
centralised processing of events or event messages.

Push Strategy For communicating events on the Web two strategies are possible: the push
strategy, i.e. a Web site informs (possibly) interested Web sites about events, and the pull
strategy, i.e. interested Web sites query periodically (poll) persistent data found at other Web
sites in order to determine changes. Both strategies are useful. The pull strategy is supported
by languages for Web queries (e.g. XQuery [3] or Xcerpt), i.e. queries to persistent data.
XChange offers the push strategy for communicating events. A push strategy has several
advantages over a strategy of periodical polling: it allows faster reaction, avoids unnecessary
network traffic, and saves local resources.

2.6 Processing of Events

Local Processing and Incremental Evaluation Event queries are processed locally at
each Web site. Each such Web site has its own local event manager for processing incoming
events and evaluating event queries against the incoming event stream (volatile data). For
efficiency reasons, (composite) event queries should be evaluated in an incremental manner.

Bounded Event Lifespan An essential aspect of XChange is that each Web site controls
its own event memory usage. In particular, the size of the event history kept in memory
depends only on the event queries posed at this Web site. This is consistent with the clear
distinction between events as volatile data and standard Web data as persistent data.

Event queries are such that no data on any event has to be kept forever in memory, i.e. the
event lifespan should be bounded. Hence, design enforces that volatile data remains volatile.
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If for some applications it is necessary to make part of volatile data persistent, then the
applications should turn events into persistent Web data by explicitly saving events, following
the programming metaphor of XChange by turning speech into text.

2.7 Relationship Between Reactive and Query Languages

A working hypothesis of the XChange project is that a reactive language for the Web should
build upon, more precisely embed, a Web query language. There are two reasons for this.
First, specifications of reactive behaviour often refer to actual Web contents – calling for
querying Web contents. Second, reactive behaviour necessarily refers to (more or less recent)
events – calling for querying events. For reasons of uniformity, it is highly desirable both
for users and for system developers that the languages used for querying Web contents and
querying events are as close as possible to each other. Note, however, that querying events
calls for time-related constructs not needed for querying Web contents.

3 The Web Query Language Xcerpt

The Web query language Xcerpt [32, 31] is embedded in XChange. Xcerpt is a pattern and
rule-based language for querying Web data (i.e. persistent data). Xcerpt uses (query) patterns
for querying Web contents and (construction) patterns for constructing new data items.

The language Xcerpt offers programmers the freedom to choose between two syntaxes for
writing query programs, an XML syntax and a compact syntax where the building blocks are
terms. The latter is used in this introduction to Xcerpt for readability and space reasons.
Terms are used for denoting query patterns (query terms), construction patterns (construct
terms) and also for denoting data items of Web contents (data terms). Common to all terms
is that they represent tree or graph-like structures. In such a tree or graph structure, the
children of a node may either be ordered, i.e. the order of occurrence is relevant, or unordered,
i.e. the order of occurrence is irrelevant. In the term syntax, an ordered term specification is
denoted by square brackets [ ], an unordered term specification by curly braces {}.

Data Terms Data terms represent data items (i.e. XML documents) that are found on the
Web. In an Xcerpt program the Web contents to be queried are specified using the keyword
resource followed by their Web address(es). Figure 1 presents two Xcerpt data terms that
represent part of the data of a flight timetable and of a hotel directory. Note that XML
element names are term labels and child elements are represented as subterms surrounded by
curly braces (in case of ordered child elements, square brackets are used).

Query Terms Query terms are (possibly incomplete) patterns for the Web data that is to
be queried and from which parts (subterms of data terms) are to be retrieved.

Total (complete) or partial (incomplete) query patterns can be specified. Partial query
specifications are useful when the structure of the queried documents is not completely known,
but also for minimising the terms that need to be written for meeting users’ query requests.
A query term t using a partial specification (denoted by double square brackets [[ ]] or curly
braces {{}}) for its subterms matches with all such terms that (1) contain matching subterms
for all subterms of t and that (2) might contain further subterms without corresponding
subterms in t. In contrast, a query term t using a total specification (denoted by single
square brackets [ ] or curly braces {}) does not match with terms that contain additional
subterms without corresponding subterms in t.

Query terms contain variables for retrieving data items, i.e. for selecting subterms of
queried data terms. Xcerpt variables are place holders for data, very much like logic pro-
gramming variables are. In Xcerpt, variables are preceded by the keyword var. Variable
restrictions can be also specified, by using the construct -> (read as), which restrict the bind-
ings of the variables to those terms that are matched by the restriction pattern (given on the
right hand side of ->).

Example. The Xcerpt query term of Figure 2 is used to query the data found at Web site
http://airline.com (see Figure 1) for flights from Paris to Munich.

Xcerpt query terms may be augmented by additional constructs like subterm negation (key-
word without), optional subterm specification (keyword optional), and descendant (keyword
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At http://airline.com: At http://hotels.net:
flights {
last-changes { "2005-08-15" },
currency { "EUR" },
flight {

number { "AI2011" },
from { "Paris" },
to { "Munich" },
date { "2005-08-21" },
departure-time { "10:30" },
arrival-time { "12:00" },
class { "economy" },
price { "75" }

},
flight {

number { "AI2021" },
from { "Paris" },
to { "Munich" },
date { "2005-08-21" },
departure-time { "17:30" },
arrival-time { "19:00" },
class { "economy" },
price { "80" }

},...
}

accommodation {
currency { "EUR" },
hotels {
city { "Paris" },
country { "France" },
hotel {

name { "Ambassade" },
category { "2 stars" },
price-per-room { "62" },
phone { "+33 1 88 8219 213" },
no-pets {}
},

hotel {
name { "Winston" },
category { "3 stars" },
price-per-room { "60" },
phone { "+33 1 82 8156 135" }
},

hotel {
name { "Villa Royale" },
category { "4 stars" },
price-per-room { "120" },
phone { "+33 1 77 8123 414" }
},...

},...
}

Fig. 1. Xcerpt Data Terms

in { resource { "http://airline.com" },
flights {{ var F -> flight {{

from { "Paris" }, to { "Munich" } }}
}}

}

Fig. 2. An Xcerpt Query Term

desc) [32]. In order to pose queries expressing that a certain subterm should not be found in
the queried data term, Xcerpt supports subterm negation.

Query terms are “matched” with data or construct terms by a non-standard unification
method called simulation unification dealing with partial and unordered query specifications.
More detailed discussions on simulation unification can be found in [32, 31].

Construct Terms Construct terms are patterns that make use of variables (the bindings
of which are specified in query terms) so as to construct new data terms. Being templates for
new data, incomplete specifications do not make sense and thus are not allowed in construct
terms. They are similar to data terms, but augmented by variables playing the role of place
holders for data retrieved in a query. Also, construct terms may contain grouping constructs
for collecting some or all instances that result from different variable bindings.

Construct-Query Rules Construct-query rules (“rules” for short) relate a construct term
(introduced by the keyword CONSTRUCT) to a query (introduced by the keyword FROM) con-
sisting of AND and/or OR connected query terms. Queries or parts of a query may be further
restricted by constraints (e.g. arithmetic constraints) in a so-called condition box (introduced
by the keyword where). The where clause has been introduced to source out all restric-
tions that are not pattern-based and thus to keep patterns for the queried data as “clean” as
possible.

Example. The Xcerpt rule of Figure 3 gathers information about the hotels in Paris with a
price limit. Note that the variable P that is to be bound to the price per room is constrained
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in the where clause and not inside the query pattern.

CONSTRUCT
answer [

all var H ordered by [ var P] ascending
]

FROM
in { resource { "http://hotels.net" },

accomodation {{
hotels {{ city { "Paris" },

var H -> hotel {{
price-per-room { var P } }}

}}
}}

} where var P < 90
END

Fig. 3. An Xcerpt Construct-Query Rule

An Xcerpt program consists of one or more rules. Complex querying problems can be
solved very elegantly using Xcerpt: rules are a means for structuring complex programs
(keeping a clear overall structure of programs) and the chaining of rules (i.e. rules can query
the result of other program rules) is the mechanism through which complex programs can be
realised. More on Xcerpt can be found in [32] and at http://xcerpt.org.

4 XChange: Language Constructs

This section introduces the core constructs of XChange by means of which distributed reactive
applications can be implemented.

4.1 Events and Event Messages

XChange distinguishes between two kinds of atomic events: explicit events and implicit events.
Explicit events are explicitly raised by a user or by a (predefined) XChange program. They
are raised at a Web site and sent internally or to other Web sites through event messages.
Implicit events are local events (e.g. local updates of data or system clock events); where
necessary they can be given a representation as an event message.

Event messages communicate events between (same or different) Web sites. An XChange
event message is an XML document with a root element labelled event and the five param-
eters (represented as child elements as they may contain complex content): raising-time
(i.e. the time of the event manager of the Web site raising the event), reception-time (i.e.
the time at which a site receives the event), sender (i.e. the URI of the site where the event
has been raised), recipient (i.e. the URI of the site where the event has been received), and
id (i.e. a unique identifier given at the recipient Web site). Note that all times are according
to the local clocks, since no globally synchronised clock can be assumed on the Web.

An event message is an envelope for arbitrary XML content. Thus, multiple event messages
can (where necessary) be nested making it possible to create trace histories. Note that
XChange messages are compatible with the messages and the “message exchange patterns”
of SOAP [2].

Example. Assume that a flight has been cancelled. The control point that has observed
this event raises it and sends the event message of Figure 4 to http://airline.com. Note
the use of the xchange namespace prefix for the element event and for the parameters of an
XChange event message.

XChange excludes broadcasting of event messages on the Web (i.e. sending event messages
to all sites of a portion of the Web), since indiscriminate sending of event messages to many
Web sites is not adequate for a non-centrally managed structure such as the Web.

4.2 XML Syntax vs. Term Syntax

The language XChange, like the query language Xcerpt integrated in XChange, has a compact
syntax (which is a term-based syntax where a term represents an XML document, a query
pattern, or an update pattern), and an XML syntax. The compact syntax has been developed
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<xchange:event xmlns:xchange="http://pms.ifi.lmu.de/xchange">
<xchange:sender>http://control.com/point-A20</xchange:sender>
<xchange:recipient>http://airline.com</xchange:recipient>
<xchange:raising-time>2005-08-21T12:00:25</xchange:raising-time>
<cancellation>

<flight>
<number>AI2021</number>
<date>2005-08-21</date>

</flight>
</cancellation>

</xchange:event>

Fig. 4. An XChange Event Message

for the programmers, while the XML syntax is for machine processing. However, programmers
have the freedom to choose whichever syntax they prefer.

For readability and space reasons, the compact syntax of XChange is used throughout this
paper. The event message given in Figure 4 using XML syntax is represented using compact
term syntax in Figure 5.

xchange:event {
xchange:sender {"http://control.com/point-A20"},
xchange:recipient{"http://airline.com"},
xchange:raising-time {"2005-08-21T12:00:25"},
cancellation {

flight { number { "AI2021" }, date { "2005-08-21" } }
}

}

Fig. 5. An XChange Event Message - Term Representation

4.3 Event Queries

For detecting situations that have occurred on the Web and require a reaction to be automat-
ically executed, incoming event messages (i.e. representations of events that have occurred
on the Web) need to be queried. Section 2.2 has pointed out differences that exist between
data of incoming events and data of Web resources, recognising that Web query languages
are not suitable for querying event data: Real life situations need for their detection not just
one event to occur, but (more often) more than one event to occur. Moreover, the temporal
order of these (component) events and the specified temporal restrictions on their occurrence
time points need also to be taken into account in detecting situations.

Mirroring these practical requirements, XChange offers not only atomic event queries but
also composite event queries.

4.3.1 Atomic Event Queries

An atomic event query refers to one single event and describes a pattern for its representation
(i.e. an event message). It specifies one event query term, i.e. an Xcerpt query term with
an (optional) absolute time restriction specification. Absolute time restrictions are used to
restrict the event instances that are considered relevant for an event query to those that
have occurred (more precisely, their representations have been received) in the specified time
interval. XChange absolute time restrictions can be specified by means of a fixed starting and
ending point (i.e. a finite time interval) following the keyword in. The starting point of such
a restricting interval can be implicit (i.e. the time point of event query definition), in which
case the ending time point follows the keyword before.

Example. An XChange atomic event query that detects insertion of discounts for flights
from Munich to Paris that are received as notifications before 7th of July 2005 is given in
Figure 6.
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xchange:event {{
flight {{

from {"Munich"}, to {"Paris"},
new-discount { var D }
}}

}} before 2005-07-07T10:00:00

Fig. 6. An XChange Atomic Event Query

4.3.2 Composite Event Queries

The capability to detect and react to composite events, e.g. sequences of events that have
occurred possibly at different Web sites within a specified time interval, is needed for many
Web-based reactive applications. However, (to the best of our knowledge) existing languages
for reactivity on the Web do not consider the issues of detecting and reacting to such composite
events ([11] considers detecting composite events, but XChange’s notion of composite events
goes beyond their notion, cf. Section 6). One of the novelties introduced by XChange is the
detection of composite events. To this aim, XChange offers composite event queries.

Composite event queries are specified by means of atomic event queries combined using
XChange composite event query constructs. XChange offers a considerable number of such
constructs along two dimensions: temporal restrictions and event compositions. This section
introduces the constructs for temporal restrictions and the core constructs for event compo-
sitions.

Note that composite events (detected using composite event queries) do not have time
stamps, as atomic events do. Instead, a composite event inherits from its components a
beginning time (i.e. the reception time of the first received constituent event that is part of the
composite event) and an ending time (i.e. the reception time of the last received constituent
event that is part of the composite event). That is, in XChange composite events have a
duration (a length of time).

Temporal Restrictions Like for atomic event queries, temporal restrictions can be speci-
fied also for composite event queries, posing temporal restrictions on the answers’ constituent
events. Besides absolute temporal restrictions, also relative temporal restrictions, given by a
duration, can be specified for composite event queries. This decision is rather straightforward
considering that each composite event has a length of time and restricting it may be very use-
ful in practice. Relative temporal restrictions can be given as positive numbers of years, days,
hours, minutes, or seconds and their specification follows the keyword within (an example is
given in Figure 7 and explained later in this section).

XChange requires every (legal) composite event query to be accompanied by a temporal
restriction specification. This makes it possible to release each (atomic or semi-composed
composite) event at each Web site after a finite time. Thus, language design enforces the
requirement of a bounded event lifespan and the clear distinction persistent vs. volatile data.

Event Compositions XChange core constructs for event compositions of event queries are
shortly introduced next.

Temporally ordered conjunctions specify that the occurrences of component event queries’
instances need to be successive in terms of time. The keyword andthen introduces such
an event query whose component event queries are enclosed in square brackets. A total
specification (i.e. single square brackets) expresses that the answer to such a composite event
query contains only the instances of the component event queries. In contrast, a partial
specification (i.e. double square brackets) expresses that the answer contains also all events
that have occurred in-between.

Example. Figure 7 gives an XChange event query that is used to detect the notification of
a flight cancellation and, within two hours from its reception, the detection of a notification
informing that the accommodation is not granted by the airline.

An XChange event query can ask for occurrences of an increase of share values by more
than 5 percent for the company Siemens, followed by an increase of share values for the
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andthen [
xchange:event {{

xchange:sender {"http://airline.com"},
cancellation-notification {{
flight {{ number { var Number } }} }}

}},
xchange:event {{

xchange:sender {"http://airline.com"},
important {"Accomodation is not granted!"}
}}

] within 2 h

Fig. 7. An XChange Composite Event Query Specifying Temporally Ordered Conjunction

company SAP on the stock market. An answer to such an event query contains instances of the
two specified component event queries (i.e. increase of share values). Another XChange event
query can ask for all stock market reports that have been registered between the occurrences
of an increase of share values for the two mentioned companies. An answer to such an event
query contains, besides the instances of the events signalling an increase for the shares of the
companies, all reports registered between these two instances.

Conjunctions specify that instances of each of the specified event queries need to be
detected in order to detect the conjunction event query. The order in which event query
instances occur is not of importance (indicated by curly braces). Keyword and introduces
such a composite event query in XChange.

Inclusive disjunctions specify that the occurrence of an instance of any of the specified
event queries suffices for detecting the disjunction event query. The keyword or denotes a
disjunction in XChange and the event queries are enclosed in curly braces.

Example. After having visited Orange, Mrs. Smith wants to visit Arles and Nı̂mes. The
next city to visit is chosen depending on the notification of train tickets and hotel reservation
made by appropriate services (Figure 8).

or {
xchange:event {{

xchange:sender {"http://service-nimes.fr"},
service-notification {{

train {{ date {"2005-08-10"},
from {"Orange"}, to {"Nimes"} }},

hotel {{ }}
}}
}},

xchange:event {{
xchange:sender {"http://reservations-arles.fr"},
reservation-notification {{

train {{ date {"2005-08-10"},
from {"Orange"}, to {"Arles"} }},

accomodation {{ }}
}}

}}
} before 2005-05-02T21:30:00

Fig. 8. An XChange Composite Event Query Specifying Disjunction

Exclusions specify that no instance of the given event query should have occurred in a
time interval in order to detect the exclusion event query. Such a time interval is given by a
finite time interval or by a composite event query (recall that their instances have a beginning
and an ending time and thus determine a time interval). The keyword without introduces
exclusion of event queries in XChange.

Example. The XChange event query of Figure 9 detects if the notification of an online
reservation made on 10th of July 2005 is not received within ten days.

Occurrences constructs for event queries refer to the number of times an event query
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without {
xchange:event {{

online-reservation-notification {{ }}
}}

} during [2005-07-10..2005-07-20]

Fig. 9. An XChange Composite Event Query Specifying Exclusion

instance should occur or should be repeated to be of interest, or to the position that events
of interest should have in the incoming event stream. The occurrences constructs supported
by XChange (and explained in the following) are quantifications, repetitions, and ranks.

Quantifications in event queries are used to detect instances that occur (at least, at most,
or exactly) a number of times in a given time interval or between occurrences of other event
query instances. The keyword times introduces such composite event queries in XChange.

Example. Figure 10 gives the travel organiser’s event query used to detect if Mrs. Smith
receives at least three important messages from her secretary during a given time interval.

atleast 3 times {
xchange:event {{
secretary-message {{ important {{ }} }}
}}

} during [2005-08-21..2005-08-22]

Fig. 10. An XChange Composite Event Query Specifying Quantifications

Repetitions are used for detecting e.g. every second, fourth, sixth, and so on, instance of
a specified event query in a given time interval or between occurrences of other event query
instances. The keyword every introduces such event queries in XChange.

Example. Mrs. Smith wants to quit slowly smoking so she answers only to every second
call from her colleague suggesting a smoking break. Such an event query can be specified in
XChange and is given in Figure 11. Note that time intervals can be given as union of finite
time intervals, thus periodical temporal specifications are also allowed in XChange. Here,
workday denotes a temporal type defined using the CaTTS system [15].

every 2 {
xchange:event {{

xchange:sender {http://ifi.lmu.de/werner},
break-for-a-smoke {{
info {"Join me for a cigarette!"} }}

}}
} within workday

Fig. 11. An XChange Composite Event Query Specifying Repetitions

Ranks are used to detect instances of a specified event query having a given rank (or
position) in the incoming stream of events. They are useful e.g. in specifying interest in the
first or the last instance of an event query. The keywords withrank and last introduce such
event queries in XChange.

Other composite event constructs are also supported by XChange. For example, the
multiple inclusions and exclusions construct is used to detect occurrences of a given number
of event query instances and the non-occurrence of instances of the other specified event
queries. It expresses a generalised exclusive disjunction of event queries.

4.3.3 Event Queries’ Answers

An answer to an atomic event query – an atomic event – is an event whose representation
(as event message) matched the event query (and occurred in the given time interval, if a
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temporal restriction has been specified). Thus, the representation of an answer to an atomic
event query is an event message – an XML document.

An answer to a composite event query – a composite event – contains all atomic events
that are used for answering the composite event query; it is a sequence of (constituent) atomic
events. Recall the example of the previous section where the answer to a temporally ordered
conjunction of event queries contains all stock market reports that have been registered
between occurrences of increase of two companies’ share values. Like atomic events, composite
events are represented as XML documents having an artificial root with child elements the
constituent atomic events (of the sequence). One of the advantages of representing composite
events as XML documents is that it allows further processing.

4.4 Actions

An XChange action specification is a group of update specifications and/or explicit event
specifications (expressing events that are constructed, raised, and sent as event messages)
that are to be executed in an all-or-nothing manner.

Update Terms An XChange update specification is a (possibly incomplete) pattern for the
data to be updated, augmented with the desired update operations. The notion of update
terms is used to denote such patterns containing update operations for the data to be modified.
An update term may contain different types of update operations. An insertion operation
specifies an Xcerpt construct term that is to be inserted, a deletion operation specifies an
Xcerpt query term for deleting all data terms matching it, and a replace operation specifies
an Xcerpt query term to determine data terms to be modified and an Xcerpt construct term
as their new value.

Example. At http://airline.com the flight timetable needs to be updated as reaction
to the event given in Figure 4. The update term that realises this is given in Figure 12.

in { resource { "http://airline.com" },
flights {{

last-changes { var L replaceby var RTime -> "2005-08-21" },
flight {{ number { "AI2021" }, date { var RTime },

delete departure-time {{ }},
delete arrival-time {{ }},
insert news { "Flight has been cancelled!!" }

}}
}}

}

Fig. 12. An XChange Update Term for Updating Flight Timetable

Intensional updates, i.e. a description of updates in terms of Web queries, can be specified
in XChange as the language inherits the querying capabilities of the language Xcerpt. This
eases considerably the specification of updates, as the next example shows.

Example. Figure 13 gives an XChange update term that specifies the modification of the
used currency from EUR to Dollar. The prices for all flights offered by a specific airline are
modified accordingly to an exchange rate.

XChange supports complex updates (e.g. ordered conjunction of atomic or complex up-
dates, meaning that all specified updates are to be executed and in the specified order). In
XChange, the keywords and and or denote conjunction and disjunction of updates, respec-
tively. Like Xcerpt, XChange uses square brackets and curly braces for expressing that the
order of evaluation is of importance and of no importance, respectively.

Example. Figure 16 specifies an XChange rule. After the keyword ACTION, the desired
action to be executed is specified, namely an ordered conjunction of updates that first inserts
into the data at http://hotels.net/reservations/ a new hotel reservation for Mrs. Smith
and then inserts the phone number of the hotel into her secretary’s diary. The other parts of
the given XChange rule are explained in the next section.
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in { resource { "http://airline.com" },
flights {{

last-changes { var L replaceby var Today },
currency { "EUR" replaceby "Dollar"},
flight {{
price {{ var OldPrice replaceby var OldPrice * var ExchangeRate }}
}}

}}
}

Fig. 13. An XChange Update Term for Modifying Prices

Event Terms An XChange event specification is a (complete) pattern for the event mes-
sage(s) to be constructed and sent to one or more Web sites. The notion of event terms is
used to denote such patterns for events to be raised. An event term represents a restricted
Xcerpt construct term having root labelled event and at least one sub-term recipient that
specifies a Web site’s address. An example of an event term is given as head of the XChange
rule in Figure 14.

4.5 Rules

An XChange program is located at one Web site and consists of one or more (re)active rules
of the form Event query – Web query – Action. Every incoming event is queried using the
event query (introduced by keyword ON). If an answer is found and the Web query (introduced
by keyword FROM) has also an answer, then the specified action(introduced by keyword DO) is
executed.

Rule parts communicate through variable substitutions. Substitutions obtained by evalu-
ating the event query can be used in the Web query and the action part, those obtained by
evaluating the Web query can be used in the action part.

Example. The site http://airline.com has been told to notify Mrs. Smith’s travel
organiser of delays or cancellations of flights she travels with. The XChange rule realising
this is given in Figure 14.

DO
xchange:event {

xchange:recipient {"http://travelorganiser/Smith"},
cancellation-notification { var F }

}
ON
xchange:event {{
xchange:sender {"http://airline.com"},
cancellation {{

var F -> flight {{ number {"AI2021"},
date {"2004-08-21"} }} }}

}}
END

Fig. 14. An XChange Rule for Raising Events

Example. The travel organiser of Mrs. Smith uses the following rule (specified in XChange
in Figure 15): if the return flight of Mrs. Smith is cancelled then look for and book another
suitable flight.

Example. If no other suitable return flight is found and the airline does not provide an
accommodation, then book for Mrs. Smith a cheap hotel and inform her secretary about the
changes in her schedule. The travel organiser’s rule is given in Figure 16.

5 XChange: Declarative and Operational Semantics

XChange combines an event language, a query language, and an update language into ECA-
rules. Accordingly, we give declarative and operational semantics separately for each rule
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DO
in { resource { "http://airline.com/reservations/" },

reservations {{
insert reservation { var F, name { "Christina Smith" } }
}}

}
ON
xchange:event {{

xchange:sender { "http://airline.com" },
cancellation-notification {{

flight {{ number { "AI2021" },
date { "2005-08-21" } }}

}}
}}

FROM
in { resource { "http://airline.com" },
flights {{
var F -> flight {{

from { "Paris" }, to { "Munich" },
date { "2005-08-21" }, departure-time { var T }
}}

}}
} where var T after 2005-08-21T14:00:00

END

Fig. 15. An XChange Rule for Booking a Flight

DO
and [

in { resource { "http://hotels.net/reservations/" },
reservations {{

insert reservation {
var H, name { "Christina Smith" },
from { "2005-08-21" }, until { "2005-08-22" } }

}} },
in { resource { "http://diary/my-secretary" },

diary {{
news {{

insert my-hotel {
remark { "I’m staying in Paris over night!" },
phone { var Tel }, reason { "Flight cancellation." } }

}} }} }
]

ON
andthen [

xchange:event {{
xchange:sender { "http://airline.com" },
cancellation-notification {{

flight {{ number { "AI2021" }, date { "2005-08-21" } }}
}}

}},
without { xchange:event {{

xchange:sender { "http://airline.com" },
accomodation-granted {{ hotel {{ }} }} }}

} during [2005-08-21T10:00:00 .. 2005-08-21T19:00:00]
] within 2 hour

FROM
in { resource { "http://hotels.net" },

accommodation {{
hotels {{

city { "Paris" },
desc var H -> hotel {{

price-per-room { var P }, phone { var Tel } }} }}
}}

} where var P < 90
END

Fig. 16. An XChange Rule for Booking a Hotel and Announcing Flight Cancellation
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part. The semantics of an XChange ECA-rule follows immediately from the semantics of its
parts; the “glue” between the parts is given by the substitutions sets for the variables.

Semantics of event queries are the most interesting aspect of XChange semantics; for space
reasons, we concentrate on event queries in this article and only give the underlying ideas for
the semantics of Web queries and updates.

5.1 Event Queries

5.1.1 Declarative Semantics

Comparisons of (composite) event query languages such as [35], show that interpretation
of similar language constructs can vary considerably. To avoid misinterpretations, clear se-
mantics are indispensable. Furthermore, they provide a basis for formal proofs of language
properties, help us understand the language design and promote the construction of optimi-
sations. We define a declarative semantics for XChange’s event query language as a ternary
relation between event queries, answers (i.e. composite events), and the stream of incoming
event messages.

In the following, we draw particular attention to the following semantic features, that
distinguish XChange from other related work on events.

• Event queries may contain features such as free variables and partial matches. The
answers to composite event queries may contain complex bindings for such variables.

• The answer to an event query is a sequence and may include (atomic) events not referred
to in the query. This is particularly useful since it allows powerful composition of event
queries (i.e. a second event query can be applied to the sequence(s) returned by the first
event query).

Answers An answer to an event query q is a tuple (s, Σ). It consists of a (finite) sequence
s of atomic events happening in a time interval [b..e] that have allowed a successful evaluation
of q and a corresponding set of substitutions Σ for the free variables of q. We write s =
〈a1, . . . an〉

e

b to indicate that s begins at time point begin(s) := b, ends at end(s) := e,
and contains the atomic events ai = dri

i , which are data terms di received at time point
rcpt(ai) := ri. We have b ≤ r1 < . . . < rn ≤ e; note that b < r1 and rn < e are possible.

Observe that the answer is an event sequence, and it is possible for instances of events not
specified in the query to be returned. For example, a partial match andthen[[a,b]] returns
not only event instances of a and b, but also (instances of) all atomic events happening
between them. This cannot be captured with substitutions alone.

Substitution Sets The substitution set Σ contains substitutions σ (partial functions)
assigning data terms to variables. Assuming a standardisation of variable names, let V be
the set of all free variables in a query having at least one defining occurrence. A variable’s
occurrence is defining, if it is part of a non-negated sub-query, i.e. does not occur inside
a without-construct, and thus can be assigned a value in the query evaluation. Let Σ |V
denote the restriction of all substitutions σ in Σ to V . For triggering rules in XChange, we
are interested only in the maximal substitution sets.

Event Stream For a given event query q, all atomic events received after its registration
form a stream of incoming events (or, event stream) E . Events prior to a query’s registration
are not considered, as this might require an unbounded event life-span. Thus, since it fits
better with the incremental event query evaluation (described in the next section), we prefer
the term “stream” to the term “history” sometimes used in related work. Formally, E is an
event sequence (as s above) beginning at the query’s registration time.

In the upcoming definition of the answering-relation we need to make statements about
an event sequence being a subsequence of the event stream (which is in turn another event
sequence). We say that an event sequence s is a subsequence (or extract) of another event
sequence s′, written s ⊂ s′, if the atomic events of s occur also in s′. Formally, 〈a1, . . . an〉

e

b ⊂

〈a′
1, . . . a

′
m〉e

′

b′ iff b′ ≤ b, e ≤ e′, and {a1, . . . an} ⊂ {a′
1, . . . a

′
m}. Similarly we say that s is a

complete subsequence (or continuous extract) of s′, written s ⊏ s′, if s contains all atomic
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events of s′ between the beginning and ending time of s. Formally, 〈a1, . . . an〉
e

b ⊏ 〈a′
1, . . . a

′
m〉e

′

b′

iff b′ ≤ b, e ≤ e′, and {a1, . . . an} = {a′
i | b ≤ rcpt(a′

i) ≤ e, 1 ≤ i ≤ m}.
Answering-Relation Semantics of event queries are defined as a ternary relation between

event queries q, answers (s, Σ), and event stream E . We write q ⊳E (s, Σ) to indicate that q is
answered by (s, Σ) under the event stream E . Definition of ⊳E is by induction on q, and we
give only a few exemplary cases here.
q is an atomic event query: q ⊳E (s, Σ) if and only if (1) s = 〈dr〉rr, (2) dr is an atomic event
in the stream E , (3) the data term d simulation unifies (“matches”) with the query q under
all substitutions in Σ. For a formal account of (3) see work on Xcerpt [31].
q = and[q1, . . . , qn]: q ⊳E (s, Σ) iff there exist event sequences s1, . . . sn s.t. (1) qi ⊳E (si, Σ) for

all 1 ≤ i ≤ n, (2) s comprises all event sequences s1, . . . sn (denoted s =
⋃

1≤i≤n si).

q = andthen[[q1, q2]]: q ⊳E (s, Σ) iff there exist event sequences s1, s′, and s2 such that

(1) qi ⊳E (si, Σ) for i = 1, 2, (2) s = s1 ∪ s′ ∪ s2, (3) end(s1) ≤ begin(s2), and (4) s′ is a con-
tinuous extract of E (denoted s′ ⊏ E) with (5) begin(s′) = end(s1) and end(s′) = begin(s2).
The event sequence s′ serves to collect all atomic events happening “between” the answers
to q1 and q2 as required by the partial matching [[ ]]. The n-ary variant of this binary
andthen is defined by rewriting the n-ary case associatively to nested binary operators.
q = without {q1} during {q2}: q ⊳E (s, Σ) iff (1) q2 ⊳E (s, Σ), (2) there is no answer (s1, Σ1)

to q1 (no (s1, Σ1) with q1 ⊳E (s1, Σ1)) such that Σ contains substitutions for the variables V
with defining occurrences that are also in Σ1 (Σ |V ⊆ Σ1 |V ).
q = q′ within w: q ⊳E (s, Σ) iff (1) q′ ⊳E (s, Σ) and (2) end(s) − begin(s) ≤ w.

Discussion Our answering relation approach to semantics allows the use of advanced
features in XChange’s event query language, such as free variables in queries, event negation,
and partial matches. Note that due to the latter two, approaches where answers are generated
by a simple application of substitutions to the query would be difficult, if not impossible to
define.

5.1.2 Bounded Event Lifespan

Our declarative semantics provide a sound basis for formal proofs about language properties.
We have used it for proving the bounded event lifespan property (see 2.6) for all legal event
queries. Legal event queries are atomic event queries and composite event queries that are
accompanied by temporal restrictions, such as q within d, q in [t1..t2], q before t2, or
without q during [t1..t2].

More exactly, to evaluate any legal event query q at some time t correctly, only events of
bounded life-span are necessary; that is, it suffices to consider the restriction E |tt−β of the

event stream E to a time interval [(t − β) .. t]. The time bound β (a length of time) is only
determined from q and does not depend on the incoming events E . Formally, this can be
stated as the following theorem:

Theorem (Evaluation with Bounded Life-Span) For all legal event queries q, there
exists a time bound β ∈ D (a length of time), such that for all time points t ∈ T, all event
streams E (end(E) ≥ t), and all answers (s, Σ) with end(s) = t we have:

q ⊳E (s, Σ) ⇐⇒ q ⊳E|t
t−β

(s, Σ).

The theorem follows immediately from two lemmas:
Lemma 1 (Bound for Answers to Legal Event Queries) For all legal event queries

q, there exists a time bound β ∈ D (a length of time), such that for all event streams E
(end(E) ≥ t), and all answers (s, Σ) with end(s) = t we have:

q ⊳E (s, Σ) =⇒ end(s) − begin(s) ≤ β.

Lemma 2 (Restriction of the Event Stream) For all event queries q, all event streams
E , and all answers (s, Σ) we have:

q ⊳E (s, Σ) ⇐⇒ q ⊳
E|

end(s)

begin(s)

(s, Σ).
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Lemma 1 gives a bound β for all legal event queries. The proof works by analysing the
required temporal restriction applied to the query q. (Note that the proof is not inductive!)

Proof of Lemma 1 If q is an atomic event query (denoted q ∈ T q), then let β = 0. The
definition of ⊳E for q atomic event query gives us s = 〈dr〉rr, and we have end(s)− begin(s) =
r − r = 0 ≤ β.

If q = q′ within w, then let β = w. Immediately from the definition we get end(s) −
begin(s) ≤ w = β.

The other cases are similar, so we do not elaborate them here.

Lemma 2 is a more general claim about event queries (whether legal or not). Its essence
is that the beginning time begin(s) and ending time end(s) of an answer (s, Σ) to some event
query q are such that only incoming atomic events happening between begin(s) and end(s)
have been considered in the query evaluation of q. Events happening before or after have not
and will not influence whether (s, Σ) is an answer or not. Proof of Lemma 2 is by structural
induction on q; again we give only a few illustrative cases.

Proof of Lemma 2 In order to be able to apply the induction hypothesis, we need to
generalise our statement from E to E |eb and will prove:

∀b ≤ begin(s)∀e ≥ end(s). q ⊳E|e
b

(s, Σ) ⇐⇒ q ⊳
E|

end(s)

begin(s)

(s, Σ)

As an auxiliary proposition, observe that for the subsequence relations ⊏ and ⊂ it holds that:

∀b ≤ begin(s)∀e ≥ end(s). s ⊏ E |
end(s)
begin(s) ⇐⇒ s ⊏ E |eb,

∀b ≤ begin(s)∀e ≥ end(s). s ⊂ E |
end(s)
begin(s) ⇐⇒ s ⊂ E |eb .

The base of the induction is q ∈ T q, i.e., q is an atomic event query.

(=⇒) From left to right we start with q ⊳E|e
b

(s, Σ), which gives us (1) begin(s) = end(s) = r

and (2) s = 〈dr〉rr ⊏ E |eb (by definition of ⊳E for q atomic). We must show (i) s = 〈dr〉rr ⊏ E |rr;
but this is simply the auxiliary proposition from above applied to (1) and (2).
(⇐=) From right to left we start with q ⊳

E|
end(s)

begin(s)

(s, Σ), which gives us (1) begin(s) =

end(s) = r and (2) s = 〈dr〉rr ⊏ E |
end(s)
begin(s)= E |rr. We must show s = 〈dr〉rr ⊏ E |eb. Again, this

is just the auxiliary proposition applied to (1) and (2).

As an exemplary case for the induction steps consider q = andthen[[q1, q2]].

(=⇒) From left to right we have (1) qi ⊳E|e
b

(si, Σi) for i = 1, 2, (2) s′ ⊏ E |eb, (3) begin(s) ≤
begin(si), end(si) ≤ end(s) for i = 1, 2. We must show (i) qi ⊳

E|
end(s)

begin(s)

(si, Σi) for i = 1, 2

and (ii) s′ ⊏ E |
end(s)
begin(s).

Statement (ii) follows directly from the auxiliary proposition. For (i) apply the induction
hypothesis =⇒ to (1) to obtain qi ⊳

E|
end(si)

begin(si)

(si, Σi) for i = 1, 2. Use of (3) and the induction

hypothesis ⇐= on this yields (i).

(⇐=) From right to left for we have (1) qi ⊳
E|

end(s)

begin(s)

(si, Σi) for i = 1, 2, (2) s′ ⊏ E |
end(s)
begin(s),

(3) begin(s) ≤ begin(si), end(si) ≤ end(s) for i = 1, 2. We must show (i) qi ⊳E|e
b

(si, Σi) for

i = 1, 2 and (ii) s′ ⊏ E |eb.
Again, (ii) is just the auxiliary proposition on (2). For (i), an application of induction

hypothesis =⇒ to (1) using (3) gives qi ⊳
E|

end(si)

begin(si)

(si, Σi). Now apply induction hypothesis

⇐= to get (i).

More detailed proofs and a deeper discussion on legal event queries can be found in [20].
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SetOfCompositeEvents evaluate( AndNode n, AtomicEvent a ) {
// receive events from child nodes
SetOfCompositeEvents newL := evaluate( n.leftChild, a );
SetOfCompositeEvents newR := evaluate( n.rightChild, a );

// compose composite events
SetOfCompositeEvents answers := ∅;
foreach ((sL, ΣL), (sR, ΣR)) ∈(newL × n.storageR) ∪ (n.storageL × newR) ∪ (newL × newR) {

SubstitutionSet Σ := ΣL ⋊⋉ ΣR;
if (Σ 6= ∅) answers := answers ∪ new CompositeEvent( sL ∪ sR, Σ );

}

// update event storage
n.storageL := n.storageL ∪ newL;
n.storageR := n.storageR ∪ newR;

// forward composed events to parent node
return answers;

}
Fig. 17. Implementation of a (binary) and inner node in pseudo-code

5.1.3 Operational Semantics: Event Query Evaluation

Evaluation of event queries should be performed in an incremental manner: work done in
one evaluation step of an event query on some incoming atomic event should not be redone
in future evaluation steps on further incoming events. To evaluate an XChange composite
event query in an incremental manner, we store all partial evaluations in the query’s operator
tree. Leaf nodes in the operator tree implement atomic event queries, inner nodes implement
composition operators and time restrictions. When an event message is received, it is injected
at the leaf nodes; data in the form of event query answers (s, Σ) (cf. previous section) then
flows bottom-up in the operator tree during this evaluation step. Inner nodes can store
intermediate results to avoid recomputation when the next evaluation step is initiated by the
next incoming event message.

Leaf nodes process an injected event message by trying to match it with their atomic event
query (using Simulation Unification). If successful, this results in a substitution set Σ 6= ∅,
and the answer (s, Σ), where s contains only the one event message, is forwarded to the parent
node. Inner nodes process composite events they receive from their child nodes following the
basic pattern:

1. attempt to compose composite events (s, Σ) (according to the operator the inner node
implements) from the stored and the newly received events,

2. update the event storage by adding newly received events that might be needed in later
evaluations,

3. forward the events composed in (1) to the parent node.

Figure 17 sketches an implementation for the evaluation of a (binary) and inner node
in java-like pseudo-code. Consider it in an example of evaluating the event query q =and{
a{{var X}}, b{{var X}} } within 2h (atomic event queries are abbreviated for notational
convenience) in Figure 18. For simplicity, we let event messages arrive at time points t = 1, 2, 3
that are one hour apart; this is of course not the normal case in practice and not an assumption
made by the algorithm.

Figure 18(a) depicts receiving the event message a{1,2} at time t = 1. The event message
does not match with the atomic event query b{{var X}} (right leaf in the tree). But it
does match with the atomic event query a{{var X}} (left leaf) with substitution set Σ1 and
is propagated upwards in the tree as answer (s1, Σ1) to the parent node and (Figure 18(d)
defines si and Σi). The and-node cannot form a composite event from its input, yet, but it
stores (s1, Σ1) for future evaluation steps.
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within 2h

and

a{{var X}} b{{var X}}

a{1,2}

(s1, Σ1)

(a) Evaluation at t=1

within 2h

and

a{{var X}} b{{var X}}

(s1, Σ1)

b{2,3}

(s2, Σ2)

(s3, Σ3)

(b) Evaluation at t=2

within 2h

and

a{{var X}} b{{var X}}

(s1, Σ1)
(s2, Σ2)

a{3}

(s4, Σ4)

(s5, Σ5)

(c) Evaluation at t=3

s1 = 〈a{1,2}1〉
1
1, Σ1 = {{X 7→ 1}, {X 7→ 2}}; s2 = 〈b{2,3}2〉

2
2, Σ2 = {{X 7→ 2}, {X 7→ 3}};

s3 = 〈a{1,2}1, b{2,3}2〉
1
2, Σ3 = {{X 7→ 2}}; s4 = 〈a{3}3〉

3
3, Σ4 = {{X 7→ 3}}; s5 = 〈b{2,3}2a{4}〉

2
3, Σ5 = {{X 7→ 3}}.

(d) Definitions of si and Σi

Fig. 18. Incremental evaluation of an event query using bottom-up data flow in a storage-
augmented operator tree

At t = 2 we receive the event message b{2,3} (Figure 18(b)); it matches the right leaf
node and (s2, Σ2) is propagated to the and-node. The and-node stores (s2, Σ2) and tries to
form a composite event (s3, Σ3) from (s1, Σ1) and (s2, Σ2). Σ3 is computed as a (variant of
a) natural join (⊥ denotes undefined): Σ3 = Σ1 ⋊⋉ Σ2 =
{σ1 ∪ σ2 | σ1 ∈ Σ1, σ2 ∈ Σ2, ∀X. σ1(X) = σ2(X) ∨ σ1(X) = ⊥ ∨ σ2(X) = ⊥}.
Σ3 now contains all substitutions that can be used simultaneously in all atomic event queries
in and’s subtree. Σ = ∅ would signify that no such substitution exists and thus no composite
event can be formed. In our case however there is exactly one substitution {X 7→ 2} and we
propagate (s3, Σ3) to the within 2h-node. This node checks that end(s3)−begin(s3) = 1 ≤ 2
and pushes (s3, Σ3) up (there is no need to store it). With this (s3, Σ3) reaches the top and
we have our first answer to the event query q.

Figure 18(c) shows reception of another event message a{3} at t = 3, which results in
another answer (s5, Σ5) to q.

After the query evaluation at t = 3, we can release (delete) the stored answer (s1, Σ1) from
the operator tree: any composite event formed with use of (s1, Σ1) will not pass the within
2h-node. Event deletion is performed by top-down traversal of the operator tree. Temporal
restriction operator nodes put restrictions on begin(s) and end(s) for all answers (s, Σ) stored
in their subtrees. In our example, all events (s, Σ) in the subtree of within 2h must satisfy
t − 2 ≤ begin(s), where t is the current time.

The idea to prove correctness of the incremental algorithm w.r.t. the declarative semantics
is by dividing the problem into two: We first forget that the algorithm is incremental and
stores events; to detect an event at a time point t we pretend that all incoming events are
processed in one single evaluation. Then we prove that the operator tree will always have
stored the right events, that is, at time point t it stores all events that can be constituting
part of a composite event with occurrence time t or later. This requires checking that in the
bottom-up data flow we store all needed events and that in the event deletion we do not delete
needed ones.

5.2 Web Queries

Xcerpt, the Web query language embedded in XChange, has declarative semantics following
the approach of Tarski-style semantics for first order logic. Operational semantics are based
on backward-chaining of deductive rules and Simulation Unification [16], which is currently
implemented by means of a constraint solver. An in-depth discussion of both declarative and
operational semantics of Xcerpt can be found in [31].

5.3 Updates

Declarative semantics for updates are based on the following observation: an effect of an
update can be described as transforming the data prior to the update into the resulting
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data. Hence, semantics of an XChange elementary update u can be expressed by an Xcerpt
construct-query rule (cf. Section 3) constructing the resulting data from the prior data. For
such Xcerpt rules, declarative semantics are available (see above).

Specifying update semantics now reduces to obtaining the corresponding Xcerpt construct-
query rule for a given update term. This can be expressed by means of a set of rewriting
rules. The underlying ideas of the rewriting process and a concrete example of obtaining a
construct-query rule for an update term can be found in [30].

An advantage of this approach is that the intricacies of state-dependence usually associated
with updates are lifted. Moreover, operational semantics can mirror the declarative semantics.
Drawbacks are, however, that expressing an update by a transformation is not an efficient
solution for operational, nor a very elegant one for declarative semantics. Better approaches
are currently being investigated.

6 Related Work

The issue of automatic reaction in response to happenings of interest has its roots in the field of
active databases [19, 29, 34]. In particular, the ability to react to composite events, i.e. possibly
time-related combinations of events has received considerable attention (e.g. [17, 22, 23]).
Thus, useful concepts can be “borrowed” from active databases when investigating reactivity
on the Web. However, differences between (generally centralised) active databases and the
Web, where a central clock and a central management are missing, necessitate new approaches.
Also, composite events reflecting a user- and application-centred (e.g. travel planning related
situations as exemplified in this paper) and not a system-centred view are needed on the Web.

Composite Events A number of works in active databases, such as COMPOSE [23],
SAMOS[22], and Snoop [17], have introduced composite events into reactive rules. The com-
position operators found in these systems are similar, though subtle differences exist [35].
XChange offers a richer event query language: In addition to simple operators like sequence,
conjunction, or disjunction, XChange offers high-level constructs, e.g. multiple inclusions and
exclusions, quantifications, and repetitions. Temporal restrictions can also be specified; they
allow for detecting events that have occurred e.g. in a given time interval. XChange event
queries not only detect (atomic and composite) events, data is extracted from events and
used to correlate atomic events within one composite event. [4], a situation monitoring sys-
tem for distributed event sources that has been proposed recently, shares with XChange the
high-level nature of constructs. In contrast, however, event data plays a less important role
than in XChange.

Some systems have introduced modes for event consumption and event instance selection
[35], which filter the events that actually trigger rules. For example, Snoop [18] uses so-
called parameter contexts for this purpose and defines the recent (takes only the most recent
occurrences of event instances into account), chronicle (uses the chronological order of the
notified events), continuous (each occurrence of an event is considered as possible component
candidate), and the cumulative context (detected composite events include all occurrences
of instances of component events). [4] shows how Snoop’s operators in the recent, chronicle,
and continuous contexts can be expressed in Amit. Composite event specifications of most
systems are not easy to write and understand (partly because they lack a precise or good
explanation of the constructs supported). Thus, when combined with event consumption
or instance selection specifications, the behaviour of the specified rules is not so easy to
grasp anymore. For this reason event consumption and instance selection are currently not
considered in XChange. Moreover, XChange takes into account the data of events which can
in many cases make event consumption and instance selection unnecessary. However, the
design and implementation of the language do not preclude such extensions.

Popular approaches to composite event detection include finite state automata [23], Petri
nets [22], and event trees or graphs (query trees/graphs with a bottom-up flow of events)
[17, 25, 27]. Of these, the event tree approach seems to be the most widely adopted; it is
used in the incremental evaluation of composite event queries in XChange, as described in
Section 5.1.3. In contrast to earlier systems, XChange considers data in the form of variable
bindings in the composite event detection. This aspect is very similar to the rete algorithm
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[21], which describes an incremental forward-chaining algorithm for use in inference systems
where over time new facts are told to the system (e.g., production rule systems).

Update Languages for the Web Most existing proposals for update languages for XML
(such as XML-RL Update Language [24], XPathLog [26], and the update extensions to
XQuery proposed in [33]) have a common trait: a path-expression is used to select nodes
within the input XML document; the selected nodes are then considered as target of the
update operations. This is not surprising: an update language represents an extension of a
query language with update capabilities or at least needs a mechanism for selecting parts of
XML documents that are to be modified. As XPath [1] (path-oriented language for address-
ing parts of XML documents) and XQuery [3] (query and transformation language for XML
data based on XPath) are World Wide Web Consortium’s recommendations, most update
proposals are built upon these standards. However, these update languages support only the
execution of simple updates (e.g. executing multiple updates in a desired order is not possible)
and important features needed for propagation of updates on the Web are still missing.

Reactive Languages for the Web Reactive languages formerly developed for the Web
support, like discussed already for the case of update languages, simple update operations on
XML documents, i.e. there is no support for specifying and executing (two or more) updates
in a desired order. For example, an Event-Condition-Action rule language for XML and RDF
data is proposed in [28, 7], supporting as actions sequences of simple insertions or deletions
to XML or RDF data. Moreover, these languages have the capability to react only to single
events and do not provide constructs for querying for complex combinations of events (i.e. no
composite event queries can be specified). XChange supports more general events than just
modifications of data; an event can be an arbitrary, application-dependent happening, such
as the flight cancellation mentioned earlier.

There is a single proposal for composite event detection for XML documents [11]. How
this approach does (or even would) scale to the Web is unclear. This proposal does not
represent a full reactive language for the Web, but it could be extended and integrated into a
reactive language. Here, a primitive event occurs when a single node in the document tree is
manipulated. Composite events are combinations (conjunctions, disjunctions, and sequences)
of primitive and/or other composite events that have a given path type (restricted XPath
expressions that determine on which path in the tree representation of an XML document node
modifications have occurred). Thus, the possible situations (composite events) a user might
be interested in have been restricted. Moreover, one cannot relate (primitive or composite)
events that have occurred in XML documents distributed on the Web, as the communication
of event data is not supported.

7 Conclusion

This article has presented the high-level language XChange for realising reactivity on the Web.
XChange introduces a novel view over the Web data by stressing a clear separation between
persistent data (data of Web resources, such as XML or HTML documents) and volatile data
(event data communicated on the Web between XChange programs). XChange’s language
design enforces this clear separation and entails new characteristics of event processing on the
Web.

XChange is an ongoing research project. The design, the core language constructs, and
the semantics of XChange are completed and have been presented here. The proof-of-concept
implementation follows a modular approach that mirrors the operational semantics, the un-
derlying ideas of which have been introduced in this paper. Issues of efficiency of the imple-
mentation, esp. for event detection and update execution, are subject to future work.

There are a couple of further research issues that deserve attention within the XChange
project, such as the automatic generation of XChange rules (e.g. based on the dependencies
between Web resources’ data) or the development of a visual counterpart of the textual
language (along this line, the visual rendering of Xcerpt programs – visXcerpt [10] – is to be
extended).
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Moreover, the integration with languages for specifying and reasoning with specific kinds
of data is intended. Application scenarios such as travel organisation assess the practical need
for reasoning with location data (e.g. to look for and book a hotel in a quiet area near to a
metro station). This suggests to consider an integration of XChange with MPLL [9] (Multi
Paradigm Location Language), a language for specifying and reasoning with different kinds
of location data. Integrating XChange with CaTTS [15], a static typed calendar and time
language that allows for declarative modelling of various calendars (e.g. Gregorian calendar,
business calendars, holiday calendars, etc.), would provide the event language with richer
temporal specifications.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful suggestions and
comments.

This research has been funded by the European Commission and by the Swiss Federal
Office for Education and Science within the 6th Framework Programme project REWERSE
number 506779 (cf. http://rewerse.net).

References

1. XML Path Language (XPath) 1.0, W3C recommendation, World Wide Web Consortium, 1999.
2. Simple Object Access Protocol (SOAP) 1.2, W3C recommendation, World Wide Web Consortium,

2003.
3. XQuery 1.0: An XML query language, W3C working draft, World Wide Web Consortium, 2005.
4. Asaf Adi and Opher Etzion, Amit – the situation manager, Very Large Data Bases Journal 13

(2004), no. 2, 177–203.
5. James Bailey, François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan, Flavours of XChange,
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