
On Subtyping of Tree-structured Data
A Polynomial Approach

François Bry1, W lodzimierz Drabent2,3, and Jan Ma luszyński3

1 Ludwig-Maximilians-Universität München, Institut für Informatik,
Oettingenstr. 67, D-80538 München, Germany, francois.bry@ifi.lmu.de

2 Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21,
Pl – 01-237 Warszawa, Poland, drabent@ipipan.waw.pl

3 Linköping University, Department of Computer and Information Science,
S – 581 83 Linköping, Sweden, jmz@ida.liu.se

Abstract. This paper discusses subtyping of tree-structured data encoun-
tered on the Web, e.g. XML and HTML data. Our long range objective
is to define a type system for Web and/or Semantic Web query languages
amenable to static type checking. We propose a type formalism motivated
by XML Schema and accommodating two concepts of subtyping: inclusion
subtyping (corresponding to XML Schema notion of type restriction) and
extension subtyping (motivated by XML Schema’s type extension). We
present algorithms for checking both kinds of subtyping. The algorithms
are polynomial if certain conditions are imposed on the type definitions;
the conditions seem natural and not too restrictive.

1 Introduction

This paper discusses subtyping of tree-structured data. With the Web, the Web
page markup language HTML, and the emergence of XML as data specification
formalism of choice for data on the Web, tree-structured data are receiving an
increasing attention. Indeed, HTML and XML documents are tree-structured –
cycles induced by ID and IDREF attributes and/or links being neglected as it is
common with Web query languages.

The long range objective of the research reported about in this paper is to
define a type system for Web and/or Semantic Web query languages amenable to
static type checking, the query language Xcerpt [7, 5] being a premier candidate
for such an extension. Such a type system should support subtyping so that the
well-typed procedures/methods of the language could also be safely applied to
subtypes. The question is thus about the suitable concept of type and subtype.
We provide a formalism for specifying types motivated by XML Schema [2] and
we show two relevant concepts of subtyping: inclusion subtyping, motivated by
XML Schema notion of type restriction, and extension subtyping, motivated by
XML Schema notion of type extension. We show conditions for type definitions
under which subtyping can be checked in polynomial time.

As XML data are essentially tree-structured, a natural approach is to view
types as sets of trees and subtyping as set inclusion. To specify such types a for-
malism of regular expression types is proposed in [10] and inclusion subtyping is

discussed. Checking of the subtyping relations can then be reduced to checking
inclusion of sets specified by regular tree grammars [8]. Tree grammars are a for-
malism of choice for specifying types for XML documents because both DTD and
XML schemas are derived from them. The inclusion problem for languages defined
by tree grammars is decidable but EXPTIME-complete. It is argued in [10] that
for the regular expression types needed in practice checking of inclusion is usually
quite efficient. We propose a formalism which is a restricted variant of regular
expression types. We argue that the restrictions reflect the usual requirements of
the XML Schema, thus our formalism is sufficiently expressive for practical ap-
plications. On the other hand, it makes it possible to identify source of potential
inefficiency, and to formulate syntactic conditions on type definitions under which
subtyping can be checked in polynomial time.

It seems that subtyping by inclusion is intuitively very close to the XML
Schema concept of type restriction, and as argued in [3] replacement of the latter
by the former would greatly simplify XML Schema.

In object-oriented processing the methods of a class must be as well applicable
to the subclasses of the class. Subtyping by inclusion is not sufficient to capture the
notion of subclass. For example, given a type person of XML documents we may
define a type student where the documents have the same elements as person

augmented with the obligatory new element university, showing the affiliation
of the student. This kind of definitions is supported by XML Schema mechanism
of type extension. Notice that in our example none of the classes is the subset of
the other. However, we would like to be able to apply all the methods of the class
person to the objects of the class student. This can be done by ignoring the
additional element of the input document. As the objective is static typing of the
methods, we need yet another notion of subtyping, in addition to subtyping by
inclusion. For our type formalism we define a formal notion of extension subtype
that formalizes such situations. In this paper we outline an algorithm for checking
extension subtyping and we give sufficient condition for type definitions under
which the check is polynomial.

The paper is organized as follows. Section 2 discusses the kind of tree-structured
data we want to deal with, and introduces a formalism of type definitions for spec-
ifying sets of such data. The next section gives an algorithm for validation of
tree-structured data w.r.r. type definitions. Sections 4, 5 discuss, respectively, in-
clusion and extension subtyping. Section 6 presents conclusions.

2 Tree-structured data

2.1 Data terms

This section formalizes our view of tree-structured data. The next one introduces
a formalism for specifying decidable sets of such data.

We define a formal language of data terms to model tree-structured data such
as XML documents. This definition does not explicitly capture the XML mecha-
nism for defining and using references. We note that two basic concepts of XML
are tags indicating nodes of an ordered tree corresponding to a document and

2

attributes4 used to attach attribute-value mappings to the nodes of a tree. Such
a finite mapping can be represented as an unordered tree (see Example 1 below).
It should also be noticed that all group of XML Schema [2] allows specifying el-
ements that may appear in the document in any order. These observations bring
us to the conclusion that we want to deal with labelled trees where the children of
a node are either linearly ordered or are unordered. We will call them mixed trees
to indicate their distinction from both ordered trees, and unordered trees.

We assume two disjoint alphabets: a countably infinite alphabet L of labels,
and an alphabet B of basic constants. Basic constants represent some basic
values, such as numbers or strings, while labels are tree constructors.

We now define a formal language of data terms for representing mixed trees.
The linear ordering of children will be indicated by the brackets [,], while un-
ordered children are placed in the braces {, }.
Definition 1. A data term is an expression defined inductively as follows:

– Any basic constant is a data term,
– If l is a label and t1, . . . , tn are n ≥ 0 data terms, then l[t1 · · · tn] and l{t1 · · · tn}

are data terms.

Data terms not containing {, } will be called ordered.
The data terms l[] or l{} are different. One may consider it more natural not

to distinguish between the empty sequence and the empty set of arguments. This
however would result in some extra special cases in our definitions and algorithms
further on.

Notice that the component terms are not separated by commas. This notation
is intended to stress the fact that the label l in a data term l[t1 · · · tn] is not an
n-argument function symbol. It has rather a single argument which is a sequence
(string) of data terms t1, . . . , tn (where n ≥ 0). Similarly the argument of l in
l{t1 · · · tn} is a set of data terms.

Example 1. Consider the following XML document

<person friend="yes" coauthor="yes">

<first-name>Francois</first-name>

<last-name>Bry</last-name>

<notes/>

</person>

It can be represented as a data term

person [attributes{ friend [yes] coauthor [yes] }
first-name[Francois] last-name[Bry] notes[]]

where yes, Francois, Bry are basic constants and attributes, friend, coauthor, first-
name, last-name, notes are labels.

The root of a data term t, denoted root(t), is defined as follows. If t is a
constant then root(t) = t. Otherwise t is of the form l[t1 · · · tn] or l{t1 · · · tn} and
root(t) = l.

4 However, there is no syntactic difference between tag names and attribute names.

3

2.2 Specifying sets of data terms

We now present a metalanguage for specifying decidable sets of data terms, which
will be used as types in processing of tree-structured data. The idea is similar to
that of [10] (see the discussion at the end of this section) and is motivated by
DTD’s and by XML Schema.

We define the sets of data terms by means of grammatical rules. We assume
existence of base types, denoted by type constants from the alphabet C and a
countably infinite alphabet V of type variables, disjoint with C. Type constants
and type variables will be called type names.

The intention is that base types correspond to XML primitive types. We as-
sume that each type constant C ∈ C is associated with a set [[C]] ⊆ B of basic
constants. We assume that for every pair C1, C2 ∈ C of type constants we are
able to decide whether or not [[C1]] ⊆ [[C2]] and whether or not [[C1]]

⋂
[[C2]] = ∅.

Additionally we assume that for each C ∈ C and a finite tuple C1, . . . , Cn ∈ C we
are able to decide whether [[C]] ⊆ [[C1]] ∪ · · · ∪ [[Cn]].

We first introduce an auxiliary syntactic concept of a regular type expression.
As usually, we use ε to denote the empty sequence.

Definition 2. A regular type expression is a regular expression (see e.g. [9])
over the alphabet V ∪ C.

Thus ε and any type constant or type variable T are regular type expressions,
and if τ, τ1, τ2, are type expressions then (τ1τ2), (τ1|τ2) and (τ∗) are regular type
expressions. As usually, every regular type expression r denotes a (possibly infinite)
regular language L(r) over the alphabet V∪C: L(ε) = {ε},L(T) = {T},L((τ1τ2)) =
L(τ1)L(τ2), L((τ1|τ2)) = L(τ1) ∪ L(τ2), and L((τ∗)) = L(τ)∗. We adopt the usual
notational conventions, where the parentheses are suppressed by assuming the
following priorities of operators: concatenation, |, ∗ (see e.g. [9]).

It is well known that any language specified by a regular expression can also be
defined by a finite automaton, deterministic (DFA) or non-deterministic (NFA).
There are algorithms that transform any regular expression of length n into an
equivalent NFAε with O(n) states, and any NFAε into an equivalent DFA see
e.g. [9]. In the worst case the latter transformation may exponentially increase
the number of states. Brüggemann-Klein and Wood [6] introduced a class of 1-
unambiguous regular expressions, for which this transformation is linear. For such
regular expression, a natural transformation from NFAε to NFA results in an DFA.

Notice that the XML definition [1] requires (Section 3.2.1) that content models
specified by regular expressions in element type declarations of a DTD are deter-
ministic in the sense of Appendix E of [1]. This condition ensures existence of a
DFA acceptor with number of states linear w.r.t. the size of the regular expression.
It seems that this informal condition is equivalent with that of [6]. We do not
put specific restrictions on our regular type expressions, but we expect that those
used in practice would not cause exponential blow-up of the number of states of
the constructed DFA acceptors.

As syntactic sugar for regular expressions we will also use the following nota-
tion:

4

– τ(n : m), where m ≥ n as a shorthand for τn|τn+1|...|τm,
notice that τ∗ can be seen as τ(0 :∞)

– τ+ as a shorthand for ττ∗,
– τ? as a shorthand τ(0 : 1),

where τ is a regular expression and n is a natural number and m is a natural
number or ∞.

Definition 3. A multiplicity list is a regular type expression of the form

s1(n1 : m1) · · · sk(nk : mk)

where k ≥ 0 and s1, ..., sk are distinct type names.

It can be easily seen that for the language defined by a multiplicity list there exists
a DFA acceptor with the number of states linear w.r.t. to the number of the type
names in the list.

We now introduce a grammatical formalism for defining sets of data terms.
Such a grammar will define a finite family of sets, indexed by a finite number of
type variables T1, ..., Tm. Each variable Ti will be associated with a set of data
terms, all of which have identical root label li. This is motivated by XML, where
the documents defined by a DTD have identical main tags. It is not required that
li 6= lj for i 6= j. Our grammatical rules can be seen as content definitions for
classes of data terms. So they play a similar role for data terms as DTD’s (or
XML Schemas) play for XML documents.

Definition 4. A type definition D for (distinct) type variables T1, ..., Tn, for
n ≥ 1 is a set of rules {R1, ..., Rn} where each rule Ri is of the form

Ti → Ei

and Ei is an expression of the form li[ri] or of the form li{qi}, i = 1, ..., n, where
every li is a label, ri is a regular type expression over {T1, ..., Tn} ∪ C and every
qi is a multiplicity list over {T1, ..., Tn} ∪ C.

Thus, we use two kinds of rules, which describe construction of ordered or
unordered trees (data terms). As formally explained below, rules of the form T →
l[r] describe a family T of trees where the children of the root are ordered and
their allowed sequence is described by a general regular expression r. The rules
of the form T → l{q} describe a family T of trees where the children of the root
are unordered. The ordering of the children is thus irrelevant and it makes no
sense to use a general regular expression for describing them. We use instead the
multiplicity list q which specifies allowed number of children of each type. A type
definition not including the rules of the form T → l{r} (where L(r) contains a
non-empty string) will be called an ordered type definition.

We illustrate the definition by the following example. In our type definitions
the type names start with capital letters, labels with lower case letters, and type
constants with symbol #.

5

Example 2. We want to represent genealogical information of people by means
of data terms. A person would be represented by the name, sex and a similar
information about his/her parents. The latter may be unknown, in which case
it will be missing in the data term. This intuition is reflected by the following
grammar.

Person → person[Name (M |F) Mother? Father?]
Name → name[#name]
M → m[]
F → f []
Mother → person[Name F Mother? Father?]
Father → person[Name M Mother? Father?]

In the sequel we give a formal semantics of type definitions, which will correspond
to this intuition.

Definition 4 requires that each type name maps to a label, but the map-
ping may not be one-one, as illustrated by the above example, where the types
Person, Father and Mother map to the same label person. This is more gen-
eral than XML, where there is a one-one correspondence between element types
defined by a DTD and tags (see Section 3.1 in [1]).

Such a restriction facilitates validation of documents but excludes subtyping
understood as document set inclusion. It turns out that we can facilitate validation
and still have inclusion subtyping if the one-one correspondence between types and
labels is enforced only locally for type symbols occurring in the regular expression
of each rule of the grammar. This is reflected by the following definition.

Definition 5. The type definition D of Definition 4 is said to be proper if for
each Ei (i = 1, . . . , n)

– for any distinct type variables Ti1 , Ti2 occurring in Ei, li1 6= li2 , and
– for any distinct type constants C1, C2 occurring in Ei, [[C1]] ∩ [[C2]] = ∅.

Notice that the type definition of Example 2 is not proper. The regular expres-
sion of the first rule includes different types Mother and Father with the same
label person. Replacing (in three rules) each of them by the type Person would
make the definition proper.

A type definition D associates with each type variable Ti a set of data terms,
as explained below.

Definition 6. A data pattern is inductively defined as follows

– a type variable, a type constant, and a basic constant are data patterns,
– if d1, . . . , dn for n ≥ 1 are data patterns and l is a label then l[d1 · · · dn] and
l{d1 · · · dn} are data patterns.

Thus, data terms are data patterns, but not necessarily vice versa, since a data
pattern may include type variables and type constants in place of data terms.
Given a type definition D we use it to define a rewrite relation →D on data
patterns.

6

Definition 7 (of→D). Let d, d′ be data patterns. d→D d′ iff one of the following
holds:

1. For some type variable T

– there exists a rule T → l[r] in D and a string s ∈ L(r), or

– there exists a rule T → l{r} in D and a string s0 ∈ L(r) and a permutation
s of s0

such that d′ is obtained from d by replacing an occurrence of T in d, respec-
tively, by l[s], or by l{s}.

2. d′ is obtained from d by replacing an occurrence of a type constant S by a
basic constant in [[S]].

Iterating the rewriting steps we may eventually arrive at a data term. This
gives a semantics for type definitions.

Definition 8. Let D be a type definition for T1, ..., Tn. A type [[Ti]]D associated
with Ti by D is defined as the set of all data terms t that can be obtained from
Ti:

[[Ti]]D = { t | Ti →∗D t and t is a data term }

Additionally we define the set of data terms specified by a given data pattern d,
and by a given regular expression r:

[[d]]D = { t | d→∗D t and t is a data term },
[[r]]D = { t1 · · · tk | t1 ∈ [[T1]]D, . . . , tk ∈ [[Tk]]D for some T1 · · ·Tk ∈ L(r) }.

Definition 9 (of labelD(T) and typeD(ci, r)). Notice that:

– Every type variable T has in D only one rule defining it, the label of this rule
will be denoted labelD(T).

– For a proper type definition D, if l[c1 · · · cn] ∈ [[T]] and T → l[r] ∈ D or
l{c1 · · · cn} ∈ [[T]] and T → l{r} ∈ D then for each ci which is not a constant
the root label of ci determines a unique type variable S such that S occurs in
r and ci ∈ [[S]]. Similarly, for each constant ci there is a unique type constant
S occurring in r such that ci ∈ [[S]]. Such type variable or constant S will be
denoted typeD(ci, r). For a data term d which for any S occurring in r is not
a member of a [[S]], we assume that typeD(d, r) = S0, where S0 is some fixed
type name not occurring in D.

If it is clear from the context which type definition is considered, we can omit the
subscript in the notation [[]]D, labelD() and typeD(,).

Example 3. Consider the following type definition D (which is proper):

Person → person[Name (M |F) Person(0 : 2)]
Name → name[#name]
M → m[]
F → f []

7

Let john, mary, bob ∈ [[#name]]. Extending the derivation

Person → person[Name M Person]→∗ person[name[#name] m[] Person]

one can check that the following data term is in [[Person]]

person[name[john] m[] person[name[mary] f [] person[name[bob]m[]]]].

Our type definitions are similar to those of [10]. The main differences are: 1.
Our data are mixed trees instead of ordered trees. 2. Our types are sets of trees;
sequences of trees described by regular expressions play only an auxiliary role. In
addition, all elements of any type defined in our formalism have the same root
label. In contrast to that, types of [10] are sets of sequences of trees. Allowing
mixed trees creates better data modelling possibilities and we expect it to be
useful in applications.

Apart of the use of mixed trees, our formalism is a restriction of that of [10]
since a set of trees can be seen as a set of one-element sequences of trees. Our
restriction seems not to be essential since we can also specify sets of sequences of
trees by means of regular type expressions, even though such sets are not consid-
ered types. It reflects the intuition that type definitions are used for describing
tree-structured data with explicitly labelled roots, and that data of the same type
have identical root labels. This conforms to the practice of XML and makes it
possible to design new validation and type inclusion algorithms with a potential
for better complexity than the algorithms of [10].

In the rest of the paper we consider only proper data definitions, unless stated
otherwise. This results in simpler algorithms. The class of ordered (i.e. without {})
proper type definitions is essentially the same as single-type tree grammars of
[11]. Restriction to proper definitions seems reasonable, as the sets defined by
main XML schema languages (DTD and XML Schema) can be expressed by such
definitions [11].

3 Validating data terms

A data definition D describes expected structure of data and we will use it to
validate given data items d, i.e. to check whether or not d ∈ [[T]], for a given type
defined by D. This section gives a general algorithm for validating data terms
against proper data definitions and examines its complexity.

Validating ordered data terms. We first consider proper type definitions which
are ordered (i.e. include no rules of the form T → {r}). In that case each [[T]]
is the set of ordered data terms derivable by the rules. We show an algorithm
that for a given proper ordered type definition D, type name T , and data term
d = c[d1 · · · dk] (k ≥ 0) decides whether or not d ∈ [[T]]D.

The algorithm depends on the fact that D is proper. This implies that for
each distinct type names S, S ′ occurring in a regular expression r from D, [[S]]D ∩
[[S′]]D = ∅. Thus when checking whether a sequence d1 · · · dk of data terms is in

8

[[r]]D we need, for a given i, to check di ∈ [[S]]D for at most one type name S,
namely S = type(di, r).

The algorithm employs checking whether x ∈ L(r) for a string x and a regular
expression r. This can be done in time O(|r| · |x|) [4]. Alternatively, one can con-
struct a DFA for L(r) for each regular expression in D; this is to be done once.
Then the checking requires |x| steps.

The validation algorithm is described as follows.

validate(d, T) :
IF T is a type constant THEN

check whether d is a basic constant in [[T]] and return the result
ELSE (T is a type variable)
IF d is a basic constant then return false
ELSE
IF the rule for T in D is T → c[r] THEN

IF root(d) 6= c THEN return false
ELSE

let d = c[d1 · · · dk] (k ≥ 0),
let Ti = type(di, r) for i = 1, . . . k,
IF T1 · · ·Tk 6∈ L(r)

THEN return false
ELSE

return
∧k
i=1 validate(di, Ti)

ELSE (no rule for T) return false.

This algorithm traverses the tree d. It checks if x ∈ L(r), for some strings and
regular expressions. The sum of the lengths of all the strings subjected to these
checks is not greater than the number of nodes in the tree. Some nodes of d may
require validation against base types. The time complexity of the algorithm is thus
linear w.r.t. the size of d provided that the validation against base types is also
linear.

Dealing with mixed trees. We now generalize the validation algorithm of the
previous section to the case of mixed terms. So a type definition may contain rules
of the form T → l{r}, where r is a multiplicity list. The validation algorithm is
similar, just the order of d1, . . . , dk within l{d1 · · · dk} does not matter.

validate(d, T) :
IF T is a type constant THEN

check whether d is a basic constant in [[T]] and return the result
ELSE (T is a type variable)
IF d is a basic constant then return false
ELSE
IF the rule for T in D is of the form T → l{r} THEN

IF d is of the form l[d1 · · · dk] (k > 0) THEN return false
ELSE

let d = d{d1 · · · dk} (k ≥ 0),
let Ti = type(di, r) for i = 1, . . . k,

9

let N be the set of the type names occurring in r
(notice that according to the definition of type(di, r)
each Ti ∈ N ∪ {S0}, where S0 6∈ N),

for each S ∈ N ∪ {S0} count the number nS of the occurrences of S
in T1 · · ·Tn,

IF nS0 = 0 and for each S(i : j) occurring in the multiplicity list r

i ≤ nS ≤ j THEN return
∧k
i=1 validate(di, Ti) ELSE return false

ELSE
IF the rule for T in D is of the form T → l[r] THEN

IF d is of the form l{d1 · · · dk} (k > 0) THEN return false,
ELSE (now as in the previous algorithm)

let d = c[d1 · · · dk] (k ≥ 0),
let Ti = type(di, r) for i = 1, . . . k,
IF T1 · · ·Tk 6∈ L(r)

THEN return false
ELSE

return
∧k
i=1 validate(di, Ti),

ELSE (no rule for T in D)
return false.

As in the previous case, the algorithm is linear.

4 Checking Type Inclusion

The main subject of this section is an algorithm for checking type inclusion. Be-
fore presenting the algorithm, we introduce some auxiliary notions. A simpler
algorithm for a more restricted class of type definitions was presented in [12].

A natural concept of subtyping is based on set inclusion.

Definition 10. A type S (with a definition D) is an inclusion subtype of type
T (with a definition D′) iff [[S]]D ⊆ [[T]]D′ .

We will denote this as S ⊆ T , provided D,D′ are clear from the context.

In this section we show an algorithm for checking type inclusion. Assume that
we want to check S ⊆ T for some types defined by proper type definitions D,D′

respectively. We assume that for each type constants C,C ′ from these definitions
we know whether [[C]] ⊆ [[C ′]] and [[C]] ∩ [[C ′]] = ∅. We also assume that for each
tuple of type constants C,C1, . . . , Cn (where [[C1]], . . . , [[Cn]] are pairwise disjoint)
we know whether [[C]] ⊆ [[C1]] ∪ · · · ∪ [[Cn]]. These facts can be recorded in tables.
Notice that in the latter case it is sufficient to consider only such C1, . . . , Cn for
which [[C]] ∩ [[Ci]] 6= ∅ for i = 1, . . . , n. (If some formalism is used to define the
sets corresponding to (some) type constants then we require that algorithms for
the checks above are given.)

By a useless symbol in a regular expression r over an alphabet Σ we mean
a symbol a ∈ Σ not occurring in any string x ∈ L(r). Notice that if r does not
contain the regular expression φ then r does not contain useless symbols. A type
name T is nullable in a type definition D if [[T]]D = ∅.

10

To introduce our inclusion checking algorithm we need some auxiliary notions.
For a pair of type variables S, T let us define a set C(S, T) as the smallest (under
⊆) set of pairs of type variables such that

– if labelD(S) = labelD′(T) then (S, T) ∈ C(S, T),
– if
• (S′, T ′) ∈ C(S, T),
• D,D′ contain, respectively, rules S ′ → l[r1] and T ′ → l[r2], or S′ → l{r1}

and T ′ → l{r2} (with the same l),
• type variables S′′, T ′′ occur respectively in r1, r2, and labelD(S′′) = labelD′(T

′′)
then (S′′, T ′′) ∈ C(S, T). If D,D′ are proper then for every S ′′ in r1, there
exists at most one T ′′ in r2 satisfying this condition, and vice versa.

C(S, T) is the set of pairs of types which should be compared in order to find out
whether S ⊆ T .

C(S, T) can be computed in time O(kn2 log(kn)), where n is the number of
rules in the definitions and k is the maximal size of a regular expression in the
definitions. There are examples of D,D′ where C(S, T) contains all the pairs of
type variables form D,D′ respectively.

Consider a type variable T in a type definition D. The unique rule T →
lαT,DrT,DβT,D in D for T (where αT,DβT,D is [] or {}) determines the regular
expression rT,D and the parentheses αT,DβT,D. When the parentheses are [] then
we are interested in the sequences of root labels in all children of the root l of the
data terms in [[T]]D. This label language is defined as follows. For a given regular
expression r

LLD(r) =



 l1, . . . , ln

∣∣∣∣∣∣

T1 · · ·Tn ∈ L(r) and for i = 1, . . . , n
li = labelD(Ti) if Ti is a type variable
li ∈ [[Ti]] if Ti is a type constant





We often skip the subscript in LLD when it is clear from the context.
For rules with parentheses {} we will deal with permutations of the strings

from label languages. For any language L we define

perm(L) = {x | x is a permutation of some y ∈ L }.

Now we discuss some necessary conditions for type inclusion and show
that they are also sufficient. Assume that D does not contain nullable sym-
bols, the regular expressions in D do not contain useless symbols and D′ is
proper. Let S, T ∈ V and [[S]]D ⊆ [[T]]D′ . Then 1. labelD(S) = labelD′(T)
and 2.αS,D = αT,D′ . 3. If αS,DβS,D = [] then LLD(rS,D) ⊆ LLD′(rT,D′).
4. If αS,DβS,D = {} then perm(LLD(rS,D)) ⊆ perm(LLD′(rT,D′)) (equivalently
LLD(rS,D) ⊆ perm(LLD′(rT,D′)).

These inclusions (and the fact that D′ is proper and rS,D does not con-
tain useless symbols) imply that for every type variable X in rS,D there exists
a unique type variable Y in rT,D′ , such that (X,Y) ∈ C(S, T) (i.e. such that
labelD(X) = labelD′(Y)). This holds for both kinds of parentheses in the rules
for S, T . Moreover, [[X]]D ⊆ [[Y]]D′ , as [[rS,D]]D ⊆ [[rT,D′]]D′ . Thus, by induction,

11

conditions 2, 3, 4 hold for each pair of type variables from C(S, T). (Condition 1
follows from the definition of C(S, T)).

On the other hand, assume that 2, 3, 4 hold for each pair from C(S, T). Take
an (X,Y) ∈ C(S, T) and assume that X →D l[X1 · · ·Xn]→∗D l[X ′1 · · ·X ′n], where
X ′1 · · ·X ′n is obtained from X1 · · ·Xn by replacing the type constants occurring
in X1 · · ·Xn by basic constants. Then there exist Y1, . . . , Yn, Y

′
1 , . . . , Y

′
n such that

Y →D l[Y1 · · ·Yn] →∗D l[Y ′1 · · ·Y ′n], and for each i = 1, . . . , n, (Xi, Yi) ∈ C(S, T)
and (Xi, Yi) = (X ′i , Y

′
i), or Xi, Yi are type constants and X ′i = Y ′i ∈ [[Yi]]. An

analogical property holds when [] is replaced by {}. By induction we obtain that
whenever a data term is derived from X in D then it is derived from Y in D′.
Thus [[X]]D ⊆ [[Y]]D′ .

These considerations result in the following algorithm for checking type inclu-
sion and the proposition expressing its correctness and completeness.

inclsubtype(S ,T) :

IF S, T are type constants THEN return [[S]] ⊆ [[T]]

IF one of the symbols S, T is a type constant and the other type variable
THEN return false

ELSE IF labelD(S) 6= labelD′(T) THEN return false
ELSE For each pair (X,Y) ∈ C(S, T) do the following:

Let X→ lαrX,Dβ ∈ D and Y → lα′rY,D′β′ ∈ D′ (where α, β, α′, β′ are
parentheses) be the rules for X and Y in D,D′.

IF αβ 6= α′β′ THEN return false

ELSE IF αβ = α′β′ = [] THEN check whether

LLD(rX,D) ⊆ LLD′(rY,D′)
ELSE (αβ = α′β′ = {}) check whether

LLD(rX,D) ⊆ perm(LLD′(rY,D′)).

IF the checks for all the pairs from C(S, T) succeed THEN return true
ELSE return false.

Proposition 1. Let D,D′ be type definitions and S, T type names.
If inclsubtype(S, T) returns true then [[S]]D ⊆ [[T]]D′ .
Assume that D has no nullable symbols, the regular expressions in D have no

useless symbols and D′ is proper. If [[S]]D ⊆ [[T]]D′ then inclsubtype(S, T) returns
true.

What remains is to check inclusion for label languages. An algorithm for
LL(r) ⊆ LL(r′) follows directly from the proposition below.

Proposition 2. Let r, r′ be regular expressions occurring respectively in type def-
initions D,D′. Let D′ be proper and r do not contain useless symbols. For each
type constant C from r consider those type constants CC,1, . . . , CC,kC from r′ for
which [[C]] ∩ [[CC,i]] 6= ∅. Let rC be the regular expression CC,1| · · · |CC,kC .

Let s be r with each type constant C replaced by rC and each type variable T
replaced by labelD(T). Let s′ be r′ with each type variable T replaced by labelD′(T).

12

Then

LLD(r) ⊆ LLD′(r′) iff L(s) ⊆ L(s′), and

[[C]] ⊆ ⋃kCi=1[[CC,i]] for each C ∈ C occurring in r.

Proof. We skip the easy “if” part of the proof. Assume that LLD(r) ⊆ LLD′(r′).
This means that for each w ∈ L(r), LLD(w) ⊆ LLD′(r′). Hence for each type vari-
able T occurring in w there occurs a type variable U in r′ such that labelD(T) =
labelD′(U). Also, for each type constant C in w and each c ∈ [[C]] there is a
type constant C ′ in r′ (thus C ′ ∈ {CC,1, . . . , CC,kC }) such that c ∈ [[C ′]]. Hence

[[C]] ⊆ ⋃kCi=1[[CC,i]]. Moreover, each c ∈ [[C]] is a member of at most one [[CC,i]]
(due to D′ being proper). This holds for each type constant C from r, as each
such C occurs in some w ∈ L(r) (because r has no useless symbols).

Take an x ∈ L(s). The string x can be obtained from some string w ∈ L(r) by
replacing each type variable T by labelD(T) and each occurrence of any constant
C by some CC,j . From LLD(r) ⊆ LLD′(r′) it follows that if w = T1 · · ·Tn ∈ L(r)
then U1 · · ·Un ∈ L(r′), where, for i = 1, . . . , n, either both Ti, Ui are variables and
labelD(Ti) = labelD′(Ui) or both are type constants and Ui = CTi,j , for some j.
Hence each x ∈ L(s) can be obtained from a string U1 · · ·Un ∈ L(r′) by replacing
each type variable Ui by labelD′(Ui). Thus L(s) ⊆ L(s′). ut

For the inclusion checking algorithm we also need a method for checking
whether

LLD(r) ⊆ perm(LLD′(r
′)) (1)

for given multiplicity lists r, r′. Inclusion (1) implies the following conditions.

1. For each T (m :n) occurring in r, where T is a type variable and n > 0,
r′ contains U(m′ :n′) such that labelD(T) = labelD′(U) and m′ ≤ m, n ≤ n′.

2. For each U(m′ :n′) occurring in r′, where U is a type variable and m′ > 0, r
contains T (m :n) such that labelD(T) = labelD′(U) and m′ ≤ m, n ≤ n′.

3. For each C(m :n), C ∈ C, occurring in r, if n > 0 then [[C]] ⊆ ⋃kCi=1[[CC,i]],
where CC,1, . . . , CC,kC are as in Proposition 2.

4. For each C ′(m′ :n′), C ′ ∈ C, occurring in r′, let BC′,1, . . . , BC′,lC′ (lC′ ≥
0) be those type constants of r for which [[BC′,j]] ∩ [[C ′]] 6= ∅. Let
BC′,1(g1 :h1), . . . , BC′,lC′ (glC′ :hlC′) be (the corresponding) subexpressions of
r. Let g′j = gj if [[Bj]] ⊆ [[C ′]] and g′j = 0 otherwise. Then

m′ ≤
lC′∑

i=1

g′i and

lC′∑

i=1

hi ≤ n′

To justify the last condition, notice that an x ∈ LL(BC′,j(gj :hj)) contains at
most hj and at least g′j constants from [[C ′]].

Conversely, notice that the conditions 1, 2, 3, 4 imply (1). Thus checking (1)
boils down to checking 1, 2, 3, 4 This completes the description of our inclusion
checking algorithm.

Now we discuss the complexity of the inclusion checking algorithm. All the facts
concerning the sets corresponding to type constants are recorded in tables, and

13

can be checked in constant time. Checking inclusion of label languages is invoked
by inclsubtype at most |C(S, T)| times. The latter number is polynomial w.r.t.
the size of the definitions D,D′. Checking condition (1) is polynomial. Inclusion
checking for languages represented by DFA’s is also polynomial.5 However when
the languages are represented by regular expressions it may be exponential. If
however the regular expressions satisfy the condition of 1-unambiguity [6] (cf. the
discussion in Sect. 2.2) then they can be in linear time transformed into DFA’s.
This makes checking whether L(s) ⊆ L(s′) polynomial. We obtain:

Proposition 3. The presented algorithm for checking type inclusion is polyno-
mial for type definitions in which the regular expressions are 1-unambiguous. In a
general case it is exponential (w.r.t. the maximal size of a regular expression).

5 Extension subtyping

We introduce in this section a different kind of subtyping, which is motivated by
the extension mechanism of XML Schema. We give a definition and an algorithm
for checking whether two given types are in this relation.

In our approach a type T is a set of trees of the form l(t1...tn) where l is a
label, each ti is in some specific type Ti, and label(ti) = label(tj) iff Ti = Tj . It
may be desirable to consider another set of trees, obtained by adding children to
the trees of T . We assume that the labels of the added children are different from
the labels of already existing children. This restriction seems to be in conformance
with the extension mechanism of XML Schema.

We will use the standard notion of a (language) homomorphism. By an erasing
homomorphism we mean a homomorphism h such that h(a) = a or h(a) = ε, for
any symbol a (from the domain of h).

The concept of extension subtype is formalized by

Definition 11. A set S1 of data terms is an extension subtype of a set S2 of
data terms, denoted S1 � S2, if S1 = S2 or there exist proper type definitions
D1, D2 and a type variable T such that S1 = [[T]]D1 and S2 = [[T]]D2 and for each
rule U → l[r2] or U → l{r2} of D2, D1 contains a rule U → l[r1] or, respectively,
U → l{r1} such that r2 = hU (r1) for some erasing homomorphism hU .

So for each d2 ∈ S2 there exists a d1 ∈ S1 obtained from d2 by removing some
subtrees, and for each d1 ∈ S1 there exists such d2 ∈ S2.

Example 4. The following data type definitions define types A and A′ such that
[[A′]]D′ � [[A]]D , as it is easy to rename type variables in D′ so that the conditions
of the definition above are satisfied. (# is a type constant; we may assume that
[[#]] is the set of character strings.)

5 In order to check whether L(M) ⊆ L(M ′) for DFA’s M,M ′, construct a product
automaton M ×M ′ and check whether no its reachable state is a pair of a final state
of M and a non-final state of M ′.

14

D = {A→ address [NSC],
N → name[(FL)|I],
I → inst[#],
S → street[#],
C → city[#]},
F → first[#],
L→ last[#] }

D′ = {A′ → address[N ′S′C ′P ′],
N ′ → name[(F ′M ′L′)|I ′],
I ′ → inst[#],
S′ → street[#],
C ′ → city[#]},
F ′ → first[#],
M ′ → middle[#],
L′ → last[#],
P ′ → pcode[T ′Z ′],
Z ′ → zip[#],
T ′ → country[#] }

If T1, T2 are both type constants then [[T1]]D1 � [[T2]]D2 iff [[T1]] = [[T2]]. If one
of T1, T2 is a constant and the other a variable, then [[T1]]D1 6� [[T2]]D2 . Otherwise
T1, T2 are type variables and the following algorithm can be used to check whether
[[T1]]D1 � [[T2]]D2 . The algorithm first constructs the set C(T1, T2) of pairs of type
variables, as described in Section 4. Then it checks if type T1 is an extension
subtype of type T2 in the following way.

extsubtype(T1, T2) :
IF C(T1, T2) = ∅ THEN return false
ELSE IF C(T1, T2) contains a pair (T, U) such that one of the variables T, U

is nullable (in, respectively, D1 or D2) and the other is not
THEN return false

ELSE IF C(T1, T2) contains a pair (T, U) such that the rules T → lα1r1β1 and
U → lα2r2β2 (where αiβi is [] or {}, for i = 1, 2) for T, U from D1, D2,
respectively, contain different kind of parentheses (i.e. α1β1 6= α2β2)
THEN return false

ELSE for each (T ′1, T
′
2) ∈ C(T1, T2) do the following:

IF both T ′1, T
′
2 are not nullable THEN

Let T ′1 → lαr1β and T ′2 → lαr2β be rules of D1, D2, respectively
Let h : V ∪ C → V ∪ C ∪ {ε} be the erasing homomorphism that erases

1. each type variable T such that
labelD1(T) 6∈ { labelD2(U) | U occurs in r2, U ∈ V }, and

2. each type constant T such that
[[T]] 6= [[U]] for each U ∈ C occurring in r2

(so for all other type names h(T) = T).
Now connect the non-erased type names from r1 to the corresponding
ones from r2. Formally:
Construct a homomorphism f : V ∪ C → V ∪ C such that
1. for any type variable T occurring in h(r1), f(T) = typeD2(labelD1(T), r2)

(this means that f(T) is the type variable U occurring in r2 such that
labelD1(T) = labelD2(U), hence (T, U) ∈ C(T1, T2)), and

2. for any type constant T occurring in h(r1), f(T) = U where U is
the type constant occurring in r2 such that [[T]] = [[U]].

(The previous step assures that f(T) is defined for any type name T
occurring in h(r1). As D2 is proper, f(T) is unique.)

15

IF the rules for T ′1, T
′
2 contain [] THEN

check whether L(f(h(r1))) = L(r2)
ELSE (the rules for T ′1, T

′
2 contain {})

check whether the multiplicity lists f(h(r1)), r2 are permutations
of each other.

IF all the checks succeed THEN return true ELSE return false

Proposition 4. Let D1, D2 be proper type definitions and T1, T2 type variables.
If extsubtype(T1, T2) returns true then [[T1]]D1 � [[T2]]D2 .

Proof. Assume that the algorithm returns true. Without lack of generality we can
assume that the sets of type variables occurring in D1 and D2 are disjoint.

For each (T ′1, T
′
2) ∈ C(T1, T2) we create a pair of new rules. Consider the

rule T ′1 → lαr1β of D1 (where αβ is [] or {}), the rule T ′2 → lαr2β of D2,
and the homomorphisms h, f used for (T ′1, T

′
2) by the algorithm. We can assume

that f(T) = T for any T not occurring in h(r1). The new rules are: AT ′
1
,T ′

2
=

T ′2→ lαf(r1)β and BT ′1,T ′2 = T ′2→ lαf(h(r1))β. So the first rule is a renamed rule
from D1; type names from D1 are replaced by the corresponding ones from D2,
whenever such corresponding name exists. The second one is the rule from D2

with the regular expression replaced by an equivalent one. Notice that f(h(r1)) =
h(f(r1)).

We construct two definitions

D′1 = {AT ′1,T ′2 | (T ′1, T ′2) ∈ C(T1, T2) } ∪D1

D′2 = {BT ′1,T ′2 | (T ′1, T ′2) ∈ C(T1, T2) }

By Def. 11, [[T2]]D′1 � [[T2]]D′2 . For each (T ′1, T
′
2) ∈ C(T1, T2), [[T ′2]]D′1 = [[T ′1]]D1 and

[[T ′2]]D′
2

= [[T ′2]]D2 . Thus [[T2]]D1 � [[T2]]D2 . ut

The algorithm performs checks for equality of languages defined by regular
expressions. Such a check can be done by converting the regular expressions into
DFA’s, minimizing them and comparing. The latter two steps are polynomial
and the first, as discussed previously, is polynomial for 1-unambiguous regular
expressions. From this fact, and from inspection of extsubtype, we conclude:

Proposition 5. The presented algorithm for checking extension subtyping is poly-
nomial (w.r.t. the size of the type definitions involved) provided the regular expres-
sions in the definitions are 1-unambiguous. Otherwise it is exponential (w.r.t. to
the maximal size of a non 1-unambiguous regular expression).

The notion of extention subtyping introduced here seems interesting and useful,
because it is close to the extension mechanism of XML Schema and an efficient
checking algorithm for it exists. What is missing, is a completeness proof of the
algorithm, i.e. that whenever it returns false then indeed the first type is not an
extension subtype of the other. We conjecture that the algorithm is complete. The
future work is to prove this. In case it turns out to be false, we intend to modify
the algorithm (and/or the definition of extension subtyping), in order to develop
an efficient sound and complete algorithm for checking extension subtyping.

16

6 Conclusions

We discussed subtyping of tree-structured data, such as XML and HTML doc-
uments. We proposed a type formalism motivated by XML Schema and accom-
modating two concepts of subtyping: inclusion subtyping (corresponding to XML
Schema notion of type restriction) and extension subtyping (motivated by XML
Schema’s type extension). We provided algorithms for checking both kinds of
subtyping. Two restrictions on the type definitions are imposed. To simplify the
algorithms, we require that type definitions are proper (cf. Def. 5). For the al-
gorithms to be polynomial, the regular expressions in type definitions should be
1-unambiguous (in the sense of [6]). The restrictions seem acceptable; this opinion
needs however practical verification.

References

1. Extensible markup language (XML) 1.0 (second edition), W3C recommendation.
http://www.w3.org/TR/REC-xml, 2000.

2. XML schema part 0: Primer. http://www.w3.org/TR/xmlschema-0/, 2001.
3. A.Brown, M.Fuchs, J. Robie, and P. Wadler. MSL: A model for W3C XML Schema.

In Proc. of WWW10, 2001.
4. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.

Addison-Wesley, 1986.
5. Sacha Berger, François Bry, Sebastian Schaffert, and Christoph Wieser. Xcerpt

and visXcerpt: From Pattern-Based to Visual Querying of XML and Semistructured
Data. In Proceedings of 29th Intl. Conference on Very Large Databases, Berlin,
Germany (9th–12th September 2003), 2003.

6. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Informa-
tion and Computation, 142(2):182–206, May 1998.

7. François Bry and Sebastian Schaffert. Towards a Declarative Query and Transfor-
mation Language for XML and Semistructured Data: Simulation Unification. In
Proceedings of International Conference on Logic Programming, Copenhagen, Den-
mark (29th July–1st August 2002), volume 2401 of LNCS, 2002.

8. H.Common, M.Dauchet, R.Gilleron, F.Jacquemard, D.Lugiez, S.Tison,
and M.Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata/, 1999.

9. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 2nd edition, 2001.

10. H. Hosoya, J. Vouillon, and B.C.Pierce. Regular expression types for XML. In Proc.
of the International Conference on Functional Programming, pages 11–22. ACM
Press, 2000.

11. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema lan-
guages using formal language theory. Submitted, 2003.

12. A. Wilk and W. Drabent. On types for XML query language Xcerpt. In International
Workshop, PPSWR 2003, Mumbai, India, December 8, 2003, Proceedings, number
2901 in LNCS, pages 128–145. Springer Verlag, 2003.

17

