
A1-D2

Geospatial Reasoning: Basic Concepts and

Theory

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/A1-D2/D/PU/a1
Responsible editors: H.J. Ohlbach
Reviewers:
Contributing participants: Munich
Contributing workpackages: A1
Contractual date of deliverable: 31 March 2005
Actual submission date: 31 March 2005

Abstract
‘Geospacial Reasoning’ is spacial reasoning including geographic data. This is an extremely
board area. In this deliverable we presented our approaches to cover enough aspects from this
area such that it is useful for Semantic Web applications. An important building block is a
hierarchy of graphs which combines very low level coordinate based computations with abstract
symbolic reasoning. Another building block is the ontology of transport networks OTN. The
graphs and the corresponding algorithms, together with OTN, provide the built-ins for the
specification language MPLL. MPLL is a functional programming language, which, however, is
mainly used to control the application of built-in algorithms, for example shortest path com-
putations. With MPLL one can define customized locational notions, and evaluate them over
the given data (maps, transport networks, user context etc.). The processing of uncertainty is
certainly a major issue also for locational reasoning. So far we have investigated the use of fuzzy
sets in this context. The FuTIRe library, which was developed for fuzzy temporal intervals can
be used for one-dimensional fuzzy distributions in a higher dimensional space as well. It is easy
to integrate the processing of two-dimensional fuzzy distributions which are only represented
by their membership functions. This is sufficient as a first approximation to fuzzy reasoning in

two dimensions.

Keyword List
semantic web, geospatial notions, geospatial reasoning techniques

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within

the Sixth Framework Programme.

c© REWERSE 2005.

ii

Geospatial Reasoning: Basic Concepts and

Theory

Hans Jürgen Ohlbach1, Bernhard Lorenz2

1 Department of Computer Science, University of Munich
Email: ohlbach@pms.ifi.lmu.de

2 Department of Computer Science, University of Munich
Email: lorenz@pms.ifi.lmu.de

31 March 2005

Abstract
‘Geospacial Reasoning’ is spacial reasoning including geographic data. This is an extremely
board area. In this deliverable we presented our approaches to cover enough aspects from this
area such that it is useful for Semantic Web applications. An important building block is a
hierarchy of graphs which combines very low level coordinate based computations with abstract
symbolic reasoning. Another building block is the ontology of transport networks OTN. The
graphs and the corresponding algorithms, together with OTN, provide the built-ins for the
specification language MPLL. MPLL is a functional programming language, which, however, is
mainly used to control the application of built-in algorithms, for example shortest path com-
putations. With MPLL one can define customized locational notions, and evaluate them over
the given data (maps, transport networks, user context etc.). The processing of uncertainty is
certainly a major issue also for locational reasoning. So far we have investigated the use of fuzzy
sets in this context. The FuTIRe library, which was developed for fuzzy temporal intervals can
be used for one-dimensional fuzzy distributions in a higher dimensional space as well. It is easy
to integrate the processing of two-dimensional fuzzy distributions which are only represented
by their membership functions. This is sufficient as a first approximation to fuzzy reasoning in
two dimensions.

Keyword List
semantic web, geospatial notions, geospatial reasoning techniques

iv

Contents

1 Introduction and Motivation 1
1.1 Examples for Data and Queries . 1
1.2 Existing Approaches . 3
1.3 Graphs, Graph Transformations and Ontologies 3
1.4 A Road Map for the Development of Hierarchical Graphs 7

2 MPLL – Multi Paradigm Location Language 8
2.1 New Data Structures in MPLL . 9
2.2 Contexts in MPLL . 9

3 Uncertainty 10
3.1 Fuzzy Sets . 10
3.2 One-Dimensional Fuzzy Distributions . 11

3.2.1 Integration of Landmarks . 13
3.3 Two-Dimensional Fuzzification . 14
3.4 Representation of Fuzzy Distributions . 14

4 Current State of Research on Locational Reasoning in WG A1 15
4.1 Transport Network Ontology (OTN) . 16
4.2 The Origins of OTN . 16
4.3 Schedules . 16
4.4 Services . 17
4.5 Meteorology . 17

5 Summary 17

v

vi

1 Introduction and Motivation

The notion “geospatial reasoning” has an extremely broad interpretation. It covers simple
coordinate computations via triangulation. It also covers route planning for all kinds of vehicles,
path finding in networks, and even robot navigation. On the very abstract end of this spectrum
we have pure logic based reasoning about spatial relations.

Since the world wide web, and therefore even more the semantic web can contain information
about really everything of interest for human beings, all this, and much more, are interesting
aspects of “geospatial reasoning” in the context of the semantic web. For a small research
project, this is of course much too broad. Therefore we have to narrow down the the focus of
the “geospatial reasoning” research in the A1 working group.

The focus of a research project can be narrowed down by considering only certain use cases,
or even just one single use case. The use case in A1 is: querying a relational or XML database

with intelligent processing of locational information. The database may contain pure locational
information, for example the road map of Munich. It may, however, also contain other kinds of
data, which is annotated with locational information, addresses, coordinates, spatial relations
to other objects etc. The query may contain “locational” constraints which must be met by
the answers. A query may, for example, be “give me all cinemas in the south of Munich”. The
problem here is to match in the south of with concrete addresses.

If we put no restrictions on the database and the queries this use case does in fact not restrict
the general problem of “locational reasoning”. Nevertheless, it illustrates the dimension of the
problem and it helps to identify manageable subproblems.

1.1 Examples for Data and Queries

We illustrate the problem with a few typical examples. The examples cover by no means the
whole area, but they give a first impression of the problems to be solved.

Example 1.1 Suppose we have some data about cities, states and countries. Entries could be:
(1) San Francisco is a city
(2) San Francisco is in California
(3) San Francisco has 3 million inhabitants
(4) California is in the USA.

A query could be: “give me all metropolises in the USA”. In order to evaluate this query we
need to:

• formulate the database entries in a logic based knowledge representation language, for
example OWL or its underlying Description Logic.

• define the concept “metropolis” in the same knowledge representation language, e.g.

metropolis = city ∧ atleast 1000000 has inhabitant (1)

(A a metropolis is a city with at least 1 million inhabitants.)

• make a so called instance test for the database entries. The instance test would conclude
from (2) and (4) that San Francisco is in the USA, and from (1) and (3) that San Francisco
is a metropolis.

1

Example 1.2 Suppose the database contains the yellow pages entries, i.e. businesses with their
addresses. A query could be: “give me the nearest pharmacy”, with the context information
that I am at a particular location X in the city, and with all the other context information
about my current situation (availability of a car, luggage, my age and gender etc.).

This query could be evaluated in a naive way by selecting the pharmacy with the smallest
geographic distances between it and the location X . This might be a first approximation,
but it can give completely useless results. A pharmacy which is located very close by, but
unfortunately it is on the other side of the river, and the next bridge is miles away, may not be
a good choice.

The answers would be much more appropriate if we use, instead of the geographic distance,
a metric which is determined by the local transport systems. This means, the nearest pharmacy
is the one which can be reached in the shortest time. This problem amounts to a route planning
problem. The system must compute the shortest route from the location X to the pharmacies
and choose the one with the shortest route. The route planner must take into account the
transport networks (road maps, tram lines, bus lines etc.), as well as the context information
about my current situation.

In fact, it turns out that the formalization of many other locational notions involve the
solution of a route planning problem.

Example 1.3 Consider the query “give me all cities between Munich and Frankfurt”. What
does between mean here? If we take a map of Germany and draw a straight line from Munich to
Frankfurt, it does not cross many cities. A more elaborate (and still too simple) formalization
of between could be: in order to check whether a city B is between the cities A and C, compute
the shortest route R1 from A to B, the shortest route R2 from B to C and the shortest route
R3 directly from A to C. If the extra distance d = length(R1) + length(R2) − length(R3), I
need to travel from A to C via B, compared to the direct route from A to C, is small enough,
B can be considered to be between A and B. Since the condition “is small enough” is not very
precise, one could use the distance d directly to order the answers to the query.

Example 1.4 Consider a database with, say, all cinemas in Munich. A query could be “give
me all cinemas in the south of Munich”. The “south of Munich”, however, has no precise
boundaries. Any artificial boundaries may yield strange results for many users. A more natural
encoding of “in the south of” is therefore a 2-dimensional fuzzy distribution over the Munich
region. The fuzzy distribution could even be non-zero for places outside, but close to the Munich
border. This fuzzy distribution gives the location of each cinema a fuzzy value, and the fuzzy
values can in turn be used to order the answers to the query.

Example 1.5 Suppose a company looks for a building site for a new factory. The site should
be close to the motorway. “Close to” does in this case of course not mean the geographic
distance to the motorway. It means the time it takes for a car or for a lorry to get to then next
junction of the motorway. The length of the shortest path to the next junction can be turned
into a fuzzy value which, in turn can be used to order the answers to the query.

We turned the relation close to(point, line) into a shortest path problem whose result is
then turned into a fuzzy value as the result of close to(point, line).

2

Example 1.6 Suppose the database contains a road map, together with dynamic information
about, say, traffic jams. The information about traffic jams is usually not very precise. It could
be something like “there is a traffic jam on the M25 of 2 miles length between junction 8 and
junction 10”.

If the M25 is taken as a straight line then the traffic jam is a one-dimensional interval whose
location is not exactly determined. Instead, we have some constraints: length = 2 miles, start
after coordinate of junction 8, and end before coordinate of junction 10.

Queries like “is there a traffic jam on the western part of the M25” gives then rise to a
constraint solving problem.

1.2 Existing Approaches

In a number of research areas methods have been developed which can help solving “locational
reasoning” problems. Since “locational reasoning” is an extremely broad notion, which has
connections to many areas in computer science, we can only mention here a few ones.

On the very concrete side there are the Geographic Information Systems (GIS), i.e. databases
and algorithms which deal with concrete geographical data, road maps, land coverage etc.

‘Shortest path in a graph’ algorithms have been developed to solve the path planning prob-
lems, for example in transportation networks. The path planning problem in a concrete 2- or
3-D environment is one of the robot navigation problems, and there are a number of more or
less practically useful algorithms to solve it [5].

The ‘shortest path in a graph’ algorithms do not take into account context information
about the traveler. It is a totally different situation if the traveler has a car available, or if he
depends on public transport systems. One way to use context information in a shortest path
algorithm is to construct a problem specific graph for the shortest path algorithm. For example,
if the traveler has a bicycle, the system might construct a graph consisting of paths and roads,
together with those railway and bus lines where a bicycle can be taken into the coaches.

The GIS techniques depend on the availability of concrete coordinates. If coordinates are
not available, symbolic data representation and reasoning is necessary. One of the symbolic
locational reasoning systems is the ‘region connection calculus’ (RCC8, [4]). It conveys the
ideas of Allen’s interval calculus from the one-dimensional case to the two-dimensional case.
RCC8 provides basic relations between two-dimensional areas and has rules for reasoning with
the relations.

A very general knowledge representation and reasoning technique are the Description Logics
[3], with OWL ass its WWW version [2]. In Description Logics one can define ‘concepts’, which
correspond to sets of objects, and one can relate individuals to the concepts. The formula (1)
is an example of a concept definition in a Description Logic.

1.3 Graphs, Graph Transformations and Ontologies

The examples in the introduction show that “locational reasoning” is a very heterogeneous
subject. Therefore we tried to develop a unified view of the area, which allows one to combine
the various techniques and results in a single system. The basis of the unified view is the
observation that in most of the approaches the data can be represented as graphs, and that
there are close connections between the different types of graphs. We illustrate this observation
with some examples.

3

Example 1.7 (Road Crossings) The first graph in Fig. 1 shows a detailed representation of
an intersection of two streets, including an underpass (dashed lines) and pedestrian pathways
(shown in red). This graph is suitable for guiding an autonomous vehicle through the area of
the crossing. A simplified version of this crossing is shown in the second graph. It contains
enough information for a standard navigation system.

Finally, one can collapse the whole road crossing into a single node of the road network.
This is sufficient for path planning on a larger scale.

N

1

2

456
7

3

8 9

10A

B

C

D

E

Detailed Road Crossing
N

Schematic Road Crossing

N

Figure 1: Road Crossing: Different Levels of Detail

In all three pictures we see the same road crossing, but on different level of detail. We are
working at a language for describing how to generate the graphs with less detail from the
graphs with more detail.

4

Example 1.8 (Floor Plans) Indoor navigation of autonomous vehicles requires a detailed
floor plan, as shown in figure (1) of Fig. 2. In order to plan a way from, say, the entrance of the
building to a particular office, such a detailed floor plan is not necessary. A simplified net plan,
such as shown in picture (2) of Fig. 2 is much more suitable for this purpose. The simplified
plan can be generated from the detailed floor plan.

(1)

(2)

Figure 2: Plain Floor Plan without and with Network Overlay

Finally, one can collapse the whole building to a single node in a bigger city map. The node
is sufficient for planning a path through the city to this building.

Example 1.9 (Symbolic Data Representation) This example shows the transition from
GIS style data representation to a pure symbolic knowledge representation.

Figure 3 shows on the left hand side the boundaries of two of the German states, and some
cities. The boundaries can be represented as polygons, and these are again just graphs. In the
right picture the polygons are collapsed into single nodes of a graph. The relation ‘polygon A
is contained in polygon B’ is turned into an NTTP edge (Non Tangengent Proper Part) of the
new graph. The relation ‘polygon A touches polygon B’ is turned into an EC edge (Externally
Connected) of the new graph.

The examples illustrate a number of observations

5

Frankfurt

Munich

BAVARIA

HESSE

NTPP

EC

TPP

NTPP

Hesse

Frankfurt

Bavaria

Munich

Germany

NTPP

Figure 3: Symbolic Data Representation

1. There is a hierarchy of graphs. At the lowest level there are graphs with the concrete
geographical details which are necessary for, say, guiding autonomous vehicles. At the
highest level there are graphs which represent logical relations between entities.

2. There are correlations between the nodes and edges of the graphs at different levels of
the hierarchy. These need not be a one to one correspondence. Usually a whole subgraph
of a lower level graph corresponds to a single node or edge of the higher level graph. A
typical example is the representation of the city of Munich in Example 1.9, as a polygon
in the left hand graph and as a single node in the right hand graph.

3. A transition from a lower level graph to a higher level graph can be facilitated by identi-
fying specific structures in the lower level graph, and transforming them into structures
of the higher level graph with the same meaning. In example 1.7 this structure is a road
crossing. In example 1.8 these structures are floors, doors, rooms etc. In example 1.9
these are cities, states etc.

These structures are in general part of an ontology. In parallel with the development
of the graphs, we therefore need to develop the corresponding ontologies. The elements
of the ontology are the anchor points for controlling the graph transformations and for
choosing suitable graphs to solve a given problem.

4. It is in general not a good idea to put all information into one single graph, even if it
is information of the same level of detail. In a typical city we have, for example, a road
map as a graph, the bus lines as a graph, the underground lines as a graph etc. We
therefore need to consider collections of graphs with transition links between the graphs.
Typical transition links between a road map and an underground map are the underground
stations. The transition links, can, however, be little graphs themselves, for example the
network of corridors and stairs in a big underground station.

5. The graphs at the higher levels of the hierarchy can and should usually be extended with
additional information which is not represented in the lower level graphs. For example,

6

the graph in example 1.9 with the symbolic information about cities and states can be
easily be extend by adding further cities and states.

1.4 A Road Map for the Development of Hierarchical Graphs

One of the most important results in this project will be the development of a technology of
‘geospatial’ knowledge representation with hierarchies of graphs. The hierarchy connects the
coordinate based GIS like information processing with the logic based symbolic reasoning. The
following steps are necessary to achieve this goal.

Step 1: Unified Representation of Graphs.
The structures at the different levels of the hierarchy are all graphs. Therefore there should be
a unified representation of these graphs. The graphs need, however, be represented in different
forms.

• We need a persistent representation of graphs which can be stored in files or databases.

• We need an in-memory representation of the graphs with a well defined application pro-
gramming interface, probably similar to the DOM structures of XML data.

• We also need geometric representations of the graphs which can be used to display the
graphs on the screen. As long as the nodes of the graph have coordinates, this is not a big
problem. Graphs at the symbolic level of the hierarchy usually don’t have coordinates.
Fortunately there are well developed graph layout algorithms which we can use here.

Since graphs at different levels of the hierarchy can represent the same objects, road cross-
ings, for example, it is very important to maintain the links between the same objects in the
different graphs. These links enable algorithms to choose the level of detail they need for doing
their computations.

It must also be possible to use the transition links between different graphs of the same level
to join several graphs into one graph. For example, a route planner for somebody without a
car may need a combined graph of all public transport systems.

As mentioned above, it should be possible to add extra information to the graphs, which is
not derivable from graphs at the lower levels. In order to do this, we need to develop an editor

for the graphs.

Step 2: ‘Geospatial’ Ontology.
We need to develop an ontology of interesting structures which can occur in the graphs (road
crossings, roundabouts, floors, train stations etc.). The ontology is the anchor point for various
auxiliary structures and algorithms, in particular:

• patterns which allow one to identify the structure in a graph, a roundabout, for example;

• transformation algorithms which simplify the structures to generate the nodes and edges
in the graphs at the higher levels of the hierarchy;

• transformation algorithms which generate a graphical representation of the structures on
the screen.

7

The ontology will also be used to annotate the structures in the graphs.

Step 3: Ontology of Graph Types.
The graphs at the different levels of the hierarchy provide the data for solving different kinds
of problems. We need to classify the graph types, such that it is possible to choose the right
graph for a given problem.

Step 4: Ontology of Means of Transportation.
A graph for a railway network, for example, represents only routes, but not the characteristics
of the trains which are used on these routes. It can, for example, be important to know, which
trains can take a bicycle on board, or which trains have wireless LAN on board etc. Therefore
we need to develop an ontology for the objects which are connected with the graphs. If the
graphs represent transportaion networks, this must be an ontology of the vehicles used on
the network. If, on the other hand, the graph represents, for example, a local area computer
network, it must be an ontology of the characteristics of the cables together with an ontology
of the devices connected to the cables.

Step 5: Context Modelling.
In the introductory examples we showed that queries which require ‘locational reasoning’ need
to take into account the context of the user. We must therefore develop a formal model of the
context. The context can, for example, be the current situation of a human user: whether he
has a car or not, whether he has luggage or not, his age and sex, and many other factors.

Step 6: Customized Graph Construction.
As we have seen in the introduction, many ‘locational reasoning’ problems require the solution
of shortest path problems in a graph. The concrete graph which is relevant for the given
problem, may, however, not be one of the graphs which are permanently available. It may be
a combination of subgraphs from different graphs, and the combination may be determined
by the context of the problem. Therefore we need to develop mechanisms for determining and
constructing for a given problem the right combination of subgraphs as the input to the relevant
problem solving algorithm.

Step 7: The Main Problem Solvers.
Finally we need to adapt or develop the algorithms for solving the main problems. These range
from ‘shortest path in a graph’ algorithms until logical calculi for reasoning with symbolic
information. Fortunately most of these algorithms are well developed and can, hopefully, be
taken off the shelf.

2 MPLL – Multi Paradigm Location Language

Locational notions are so diverse that it is impossible to hard-code even the most important
ones in a knowledge representation system. The alternative is therefore to develop a specifi-
cation language for locational notions. The language can then be used to define application
specific locational notions in a symbolic way. The specifications can, however, be compiled into
executable code. The specification language must be expressive enough to define locational no-
tions in an easy and intuitive way, and it must have the relevant data structures and algorithms
built in.

8

Our – yet to be developed – language MPLL uses the time independent parts of the geotem-
poral specification language GeTS [9] as a kernel. MPLL extends the kernel of GeTS with
location specific concepts. The built-in data structures of GeTS are various number types, one
dimensional fuzzy intervals over the real numbers, labelled partitionings for modelling periodic
temporal notions, calendar systems and durations. The number types and the one dimensional
fuzzy intervals are also relevant for MPLL. All other data types are not needed. GeTS is a
typed functional language with the usual control constructs, local variable bindings, but also
assignments and a few other imperative constructs. These are also part of MPLL.

2.1 New Data Structures in MPLL

The first extension of the kernel of GeTS in MPLL are two-dimensional coordinates as built-in
data structures. It is not a big problem to provide the various geographic coordinate systems
with corresponding transformation functions.

The most important new data structure, however, are the hierarchies of graphs which we
introduced on the last section. Quite a number of operations will be part of MPLL, from purely
navigational operations to shortest path algorithms. An example for a specification in MPLL
which uses these built-ins is the definition of between:

between(A, B, C) =
length(path(A, C))

length(path(A, B)) + length(path(B, C))
(2)

path(A, B) computes the shortest path from A to B. length(path(A, B)) yields the length of
this path. Thus, between(A, B, C) yields a value between 0 and 1. The result is 1 if B is exactly
on the path between A and C. The longer the detour through B is, the smaller is the value of
between(A, B, C).

(2) is not really a realistic MPLL definition of between. First of all, it gives values close to 1
if B is close to A or C, but on the wrong side of A or C respectively. It is not difficult to refine
(2) to fix this.

The second point is that the variables A, B and C in (2) need to be typed, for example
with between(place A, place B, place C). Here we seen another difference to GeTS. GeTS has
only a fixed number of built-in types. In contrast to this, MPLL needs access to an ontology,
such that the concepts of the ontology can be used as types in the language. ‘place would be
such a concept, with subconcepts, for example, ‘city’, ‘town’ , ‘village’ etc. The MPLL compiler
and the MPLL runtime engine will therefore have access to an ontology server such that the
concepts of the ontology can be imported into MPLL at compile- and run time. It is obvious
that the ontology which is imported as MPLL types is also used as attributes in the graphs,
such that, for example, a variable place A can be bound to a node in a corresponding graph
which is labelled, for example, with type city.

2.2 Contexts in MPLL

The function path(A, B) in (2) is in fact under-specified. A shortest path in a transport net-
work between A and B depends on the situation of the traveler. It makes a big difference,
if, for example, he uses a car, or depends on public transport. There are two ways to deal
with this. Either MPLL provides primitives for constructing traveler specific graphs, and calls
path(A, B, G) where G is the customized graph. Alternatively, MPLL passes context informa-
tion about the traveler to the path function: path(A, B, context). In both cases we need a

9

‘Context’ data structure in the language. The context can be used to model a traveler, but this
is only a special case. In order to be as general as possible, context information will be repre-
sented as sets of key-value pairs k = v where v can be a concept of an ontology. Examples are:
traveller = person∧gender = male∧age = 30∧. . ., means of transportation = BMW ∧
At this point MPLL needs access to an ontology server with ontologies about persons, vehicles
etc.

3 Uncertainty

Many locational expressions are imprecise. Mathematical models of imprecision distinguish
various kinds of impreciseness. Consider the phrase ‘there is a traffic jam of 2 miles length at
the M25 between junction 10 and junction 12. It describes a real situation which is completely
determined. However, our knowledge about the situation lacks some information, namely where
exactly the traffic jam is. Mathematical formalizations of such situations use constraints and
constraint reasoning.

The phrase ‘the accident happened at the M25 close to junction 10’ also describes a real
situation which is completely determined. The expression ‘close to’, however, is so imprecise
that constraint reasoning is not applicable. Alternatively one can use fuzzy distributions to
map the distance to junction 10 to fuzzy values, i.e. real numbers between 0 and 1. The fuzzy
value for distance x can be interpreted as a kind of probability that the accident happened at
distance x from junction 10.

A combination of constraint reasoning and fuzzy distributions is necessary for modelling
the phrase ‘there is a traffic jam of about 2 miles length at the M25 between junction 10 and
junction 12’. ‘about 2 miles length expresses that the exact length is unknown. This can also be
modelled with a fuzzy distribution for the length. The fuzzy values have their maximum 1 for
exactly two miles length, and decrease for values greater than 2 miles and smaller than 2 miles.
Since the exact location of the traffic jam is not known, but constrained between junction 10
and junction 12, constraint reasoning is necessary for this aspect. The combination of fuzziness
for distances between points and constraints for the exact location of points yield so called
fuzzy constraint networks. There are algorithms for solving fuzzy constraint networks. At the
current state of the project, we have not investigated whether and how they can be used for
our purposes.

Uncertainties have also been modelled with various other mathematical and logical for-
malisms (probability theory, Dempster-Shafer theory, plausibility theory, default reasoning,
epistemic logics etc.). It goes beyond the scope of this report to investigate all these approaches
in the context of locational reasoning. Here we concentrate only on one method: fuzzy sets.

3.1 Fuzzy Sets

The prototypical fuzzy locational expression is ‘close to’.

‘Close to junction 10 at the M25’ indicates a one-dimensional fuzzy distribution along a line
(the M25).

‘Close to the North Pole’ indicates a two-dimensional fuzzy distribution around a point.
‘Close to the motorway M25’ indicates a two-dimensional fuzzy distribution around a line

(the M25).
‘Close to London’ indicates a two-dimensional fuzzy distribution around an area (London).

10

In principle these four cases are very similar. The distance from a given point x to a given
point/line/area is turned into the fuzzy value associated with x. The distance may be measured
either with geographical coordinates, or with the metric which is determined by the local
transport systems. Turning distances into fuzzy values between 0 and 1 has some advantages.
First of all, the function which maps distances to fuzzy values introduces an assessment of the
distance. If it is, for example, an exponentially decreasing Gaussian distribution (cf. Fig. 3.1),
it makes points close to the point/line/area equally important (fuzzy value close to 1), and
points further away equally unimportant (fuzzy value close to 0). Secondly, the fuzzy values
are a kind of normalization which can make things comparable which are usually not so easily
to compare. For example, the two phrases ‘close to junction 10 on the motorway M25’ and
‘close to my office building in the city’ refer to distances which are very different in the two
cases. If, however, both are mapped to the same fuzzy value, say 0.9, this means really pretty
‘close to’.

-

6

R
0

1

x0

Figure 4: Gaussian Shape

An n-dimensional fuzzy distribution is an n + 1-dimensional structure, where the n + 1st di-
mension is the fuzzy value. Fig. 5 shows the three-dimensional structure which represents a
two-dimensional fuzzy distribution around a line segment.

x

y

z

1.0

0.0

Figure 5: Linear fuzzification of a line segment

The one- and two-dimensional fuzzy distributions are of particular importance for locational
reasoning.

3.2 One-Dimensional Fuzzy Distributions

A phrase like ‘close to junction 10 at the M25’ contains the fuzzy notion ‘close to’. A line
in a two-dimensional plane is essentially a one-dimensional structure. The two-dimensional

11

coordinates of the line points can be turned into one-dimensional coordinates by taking the
distance from a specific point S along the line as coordinate (cf. Fig. 6).

S

2

4

5 D
1 3

b)a)

S 1 2 3 4 5 D

Figure 6: Representation of a Route as Straight Line Segment

If we associate each point of the line a fuzzy value, then the one-dimensional representation
of the line offers the possibility to use the purely one-dimensional fuzzy interval mechanisms,
in particular the FuTIRe library which has been developed for fuzzy temporal intervals [8].

The fuzzy encoding of ‘close to’ involves a mapping of distances to fuzzy values. This
mapping is very subjective and context dependent. There are, however, one-dimensional fuzzy
distributions which can be based on objective criteria. In a region with poor GSM coverage,
for example, the fuzzy value along the route could indicate the reception quality for mobile
phones, ranging from 0 (none) to 1 (excellent). Converting distances to GSM base stations
along the route into fuzzy values provides a simple way to ascertain GSM reception for any
point along the route. Many other route characteristics can be modelled this way: inclines,
friction coefficients, curve radii, terrain attributes such as flora or housing density, and more.

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

S

2

4

5 D
1 3

Figure 7: Extended Route Features

Figure 7 shows an enriched version of figure 6. The dotted green lines denote the maximum
range of GMS base stations, an urban area is marked by red hatching. For example the quality
of GSM signal reception for any location along the route can be now deduced by calculating
the distances to the nearest GSM transmitter in the vicinity. The result is a fuzzy interval like
the following1:

1Technically, reception quality and attenuation is not linear over distance and is of course depending on

several more complicated factors, but for demonstration purposes this approximation will suffice.

12

-

6

R
0

1

GSM Reception

S 1 2 3 4 5 D

An interval marking urban areas can be applied in a similar way. The following diagram
shows the urban boundaries as a crisp interval along the route from S to D:

-

6

R
0

1

Affiliation to urban areas

S 1 2 3 4 5 D

3.2.1 Integration of Landmarks

Fuzzy intervals such as the above can also be used to integrate landmarks into a route. Land-
marks are a “monument or material mark or fixed object used to designate a land boundary
on the ground: any prominent object on land that may be used to determine a location or a
direction in navigation or surveying” [1] and “point references considered external to the user”
[7]. Landmarks serve primarily as navigation and routing aids. As they are only very rarely
part of the route itself incorporating landmarks into route data structures poses an interesting
problem.

Landmarks are used for a variety of purposes. They can denote a location where a certain
action is to be performed: “Turn right at the supermarket.” They also serve as directional
aids: “Go into the direction of the cathedral.”, “Follow the river on your right hand side.”
Fuzzy representations are sometimes particularly well suited to handle references to landmarks.
Directions for example (see section ?? are rarely crisp. Therefore a fuzzy interval which denotes
the fulfillment of a typical landmark notion such as “go uphill” or “go towards the church”
could only be computed with difficulties by crisp means (slight deviations are problematic),
while fuzzy representations are quite elegant. Assuming that on a smaller scale example of
the scenario described in Fig. 7 the church is located at junction 4, the fuzzy intervals for the
different route segments could look like this:

-

6

R
0

1

Satisfying a fuzzy condition: “go towards the church”

S 1 2 3 4 5 D

13

A computation by crisp methods needs to somehow include special treatment of “near
misses”. If the instruction is “go towards the church”, would a segment which deviates from
the absolute direction to the church by only a few degrees be disregarded? What happens if
there are no other alternatives, in particular not a single one satisfying the instruction? What
happens if there are several equally (i.e. perfectly well) suitable alternatives? These questions
also arise when using fuzzy logic, but solving them is much easier.

3.3 Two-Dimensional Fuzzification

In the same way a one-dimensional structure can be fuzzified by transforming it into a two-
dimensional structure, a fuzzified two-dimensional structure can be represented by a three-
dimensional structure. Two-dimensional shapes represent many different elements commonly
found in a map. A series of line segments can represent a highway, railway line or a river,
but also abstract elements like border lines or flight connections. Polygons denote all elements
which occupy an area of some sort, either real or abstract: cities, lakes, woods, farm land,
districts, and so on.

Fuzzification of these shapes is especially important because of their importance for nav-
igation and their common use in interpreting and communicating geospatial data. Real-life
expressions like “near the river” or “in the south of Munich” can only be processed correctly,
if there exists an equivalent counterpart in the model representation. The first expression
means that a linear shape (the river) has to be expanded by fuzzification into a polygon which
encompasses the area denoted by the term “near” in a fuzzy way. To be more exact, the two-
dimensional shape becomes a three-dimensional shape which looks like a ridge (see Fig. 5). The
second expression implicates the transformation of a polygon (the city of Munich, simplified in
Fig. 8 a)) into a trapezoid-like shape. In two separate steps, the polygon has to be clipped (Fig.
8 b), c)) to satisfy the notion of “the south of...” and the resulting polygon must be fuzzified
in order to represent the notion of “within” (Fig. 8 d)).

���������
���������
���������
�������
�������
�������

b)a)

���������
���������
���������
���������
���������
���������

c)

���������
���������
���������
�������
�������
�������

d)

Figure 8: ‘In the South of’

3.4 Representation of Fuzzy Distributions

Fuzzy distributions are determined by their membership functions. An important question
for a concrete implementation is whether it is necessary to represent a fuzzy distribution as
a concrete data structure, or whether it suffices to be able to apply the membership function
to particular elements of the base set. In most cases this will be sufficient. For answering a
query ‘give me all cinemas in the south of Munich’, for example, it is not necessary to store the
three-dimensional representation of the south of Munich (Fig. 8 d). It is completely sufficient
to apply the membership function to the coordinates of the cinemas.

14

A representation of whole fuzzy distributions may become useful if, for example, it is neces-
sary to integrate over the fuzzy distribution. Consider, for example, the statement ‘the traffic
jam was between around junction 10 and around the road works at junction 12’. ‘around junc-
tion 10’ and ‘around the road works at junction 12’ can be modelled as one-dimensional fuzzy
distributions as in Fig. 9. The fuzzy value for the traffic jam (car density, for example) is
maximal at a location x which is definitely after ‘around junction 10’ and before ‘around the
road works at junction 12’. ‘Definitely after around junction 10’ means that the normalized
integral over the fuzzy distribution ‘around junction 10’ must be 1. ‘Definitely before around
the road works at junction 12’ means that the normalized backwards integral over ‘around the
road works at junction 12’ must also be 1. The dashed line in Fig. 9 indicates the intersection
of the two integrals as a representation of the traffic jam.

-

6

R
0

1

J 10 J 12
Figure 9: Integration over Fuzzy Distributions

The FuTIRe library has a data structure for representing one-dimensional fuzzy intervals as
polygons together with various operations, in particular integration functions. We have not yet
investigated whether similar data structures and operations are necessary and possible for the
two-dimensional case.

Fuzzy distributions must of course be integrated with the hierarchies of graphs we introduced
in Section 1.3. For the graphs whose nodes are labelled with concrete coordinates, this is only a
technical problem which can be solved at the implementation level. It is not yet clear whether
such an integration is necessary and possible for the abstract graphs which contain only symbolic
knowledge.

4 Current State of Research on Locational Reasoning in

WG A1

We started our research in this area with the study of existing approaches to ‘locational rea-
soning’, from GIS systems to very abstract logical calculi. The next step was the development
of a common framework which allows one to combine the different levels of abstraction. We are
now convinced that the graph hierarchy, and in particular the possibility to navigate through
this hierarchy is the right approach.

Concrete locational notions, like ‘close to’ or ‘in the south of’ etc. cannot be hard coded
into the implementation. Our approach is therefore the development of the MPLL specification
language. The kernel of this language is identical with the kernel of the GeTS language for
temporal notions. Therefore we have already an implementation to start with. Quite early it be-
came clear that essential parts of the locational reasoning mechanism are ontologies. Therefore
we started the development of an ontology for transport networks.

15

4.1 Transport Network Ontology (OTN)

An essential foundation for interoperable applications is a holistic concept of the underlying
structures of the data to be processed, i.e. an ontology. The purpose of the Transport Network
Ontology (OTN) is to provide such a foundation for applications which deal with locations,
locational relationships and mostly with the aspects of locomotion and transportation.

4.2 The Origins of OTN

Different parties have worked on standards and interfaces in geographic data interchange since
the late eighties. In 1993, the technical commission TC204 of the International Organization

for Standardization (ISO) [?] began work on Intelligent Transport Systems (ITS) [?]. The aim
of their working group 3 was to review existing regional standards, which revealed to be highly
heterogene. While the Japan Digital Road Map Association (JDRMA) [?] mainly worked on
standards catering for navigation systems and the necessary optimizations therefore, the Amer-
ican Spatial Data Transfer Standard (SDTS) [?] was designed to facilitate the description of
records, but not the standardization of content. In Europe, the Geographic Data File (GDF) [?]
was developed as an extensible and application-independent data model for transport systems.
Subsequently, seven countries2 continuously revised and extended GDF, which led to the release
of GDF 4.0 on 21. March 2002 as the official ISO standard ISO-14825 [6] for geographic data
interchange in transport applications.

While the underlying model of GDF mainly includes a thorough representation of car traf-
fic and road networks, other modes of transportation have received less attention. Additional
elements, such as services or public transport, are not included in GDF. OTN incorporates the
comprehensive model of road networks underlying GDF, and extends the ontology to compen-
sate for the neglected fields. Further extension is not only possible, but also desirable, since
there cannot be a complete ex-ante model of all traffic and transport related affairs – nor for any
other domain for that matter. To be usable with today’s web infrastructures, OTN is specified
in the Web Ontology Language (OWL). OTN contains some extensions which are not present
in GDF: schedules, services and meteorology.

4.3 Schedules

OTN was developed as an integrated approach to modelling private and public transport.
Therefore one of the most important features is the specification of schedules. In GDF the
specification of schedules is limited to providing a time frame (start and end time) and a
network segment (road or ferry segment) to convey that for example the ferry from Staten
Island to Manhattan operates from 04:30 am to 11:30 pm. Further specification of travel times,
intervals and such is not possible.

Because of the importance for (multi-modal) routing, OTN facilitates the definition of de-
parture times, travel times and time frames. A typical segment or connection in public transport
has an attribute “timetable”, which holds a series of schedules. Each schedule is valid during
“validity Period”, i.e. the time frame in which the respective means of transportation operates,
while “loop Time” defines the interval. “starts at” contains the starting node (which can be
located at either end of an edge) and “travel Time” contains the regular or individual duration
of travel. Optionally, a “waiting Time” indicates an idle time before departure. A ferry, which

2Australia, Canada, Germany, Japan, Korea, the Netherlands and the U.S.

16

commutes hourly between 06:30 am to 06:30 pm from node A to node B, has a travel time of
30 minutes, and can be loaded 20 minutes prior to departure, could have a schedule like the
following:

<Timetable rdf:ID="Timetable_A-B">

<starts_at rdf:resource="#A"/>

<waiting_Time>m20</waiting_Time>

<loop_Time>h1</loop_Time>

<travel_Time>m30</travel_Time>

<validity_Period>

<Validity_Period rdf:ID=’validity_Timetable_A-B’>

<time_duration>h12</time_duration>

<starting_Date>h6m30</starting_Date>

</Validity_Period>

</validity_Period>

</Timetable>

4.4 Services

OTN caters for different aspects beyond those pertaining to routing and navigation. Services

represent one of these aspects.
GDF generally introduces the notion of services, although – among a series of proposed

services – only one is implemented: the service “Entry Point” defines the access to a service.
OTN includes most of the GDF proposed services and provides further extensions. The

attribute “is Accessible at” renders the GDF-service “Entry Point” useless3, therefore it has
not been taken up in OTN. One, for the purpose of OTN very important, service is called
“Transfer Service”. It describes means to change the transport vehicles, for example, from car
to train. Parking places, for example, are modelled as part of transfer services.

4.5 Meteorology

New in OTN is the possibility to store weather information. There is the topic ‘Meteorology’,
which is subdivided into the classes ‘Temperature’ and ‘Weather’. These are subclasses of ‘Face’

and define an area with the actual temperature and the kind of weather: ‘snow’, ‘sleet’, ‘hail’,
‘dew’, ‘rain’, ‘shiver’ and ‘storm’.

5 Summary

‘Geospacial Reasoning’ is an extremely broad area. In this deliverable we presented our ap-
proaches to cover enough aspects from this area such that it is useful for Semantic Web appli-
cations. An important building block is the hierarchy of graphs which combines very low level
coordinate based computations with abstract symbolic reasoning. Another building block is the
ontology of transport networks OTN. The graphs and the corresponding algorithms, together
with OTN, provide the built-ins for the specification language MPLL. MPLL is a functional
programming language, which, however, is mainly used to control the application of built-in

3“Entry Point” only represents another service and it’s accessibility.

17

algorithms, for example shortest path computations. With MPLL one can define customized
locational notions, and evaluate them over the given data (maps, transport networks, user con-
text etc.). The processing of uncertainty is certainly a major issue also for locational reasoning.
So far we have investigated the use of fuzzy sets in this context. The FuTIRe library, which
was developed for fuzzy temporal intervals can be used for one-dimensional fuzzy distributions
in a higher dimensional space as well. It is easy to integrate the processing of two-dimensional
fuzzy distributions which are only represented by their membership functions. This is sufficient
as a first approximation to fuzzy reasoning in two dimensions.

References

[1] EPA - U.S. Environmental Protection Agency: http:// www.epa.gov .

[2] OWL Web Ontology Language. http://www.w3.org/TR/owl-guide/.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Ap-

plications. Cambridge University Press, 2003.

[4] Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts. Qualitative
spatial representation and reasoning with the region connection calculus. GeoInformatica,
1(3):275–316, 1997.

[5] Kamal Gupta and Angel P. del Pobil, editors. Practical Motion Planning in Robotics. Wiley,
1998. ISBN: 0-471-98163-X.

[6] Iso/ts standard 14825: Intelligent transport systems – geographic data files (gdf) – overall
data specification. http://www.iso.org, February 2004.

[7] Kevin Lynch. The Image of the City. MIT Press, June 15, 1960.

[8] Hans Jürgen Ohlbach. Geotemporal reasoning: Basic theory. Deliverable D1 of EU NoE
Rewerse Working Group A1, 2004.

[9] Hans Jürgen Ohlbach. Implementation: Gets – a specification language for geo-temporal
notions. Deliverable D10a of EU NoE Rewerse Working Group A1, 2005.

18

http://www.epa.gov
http://www.iso.org

	Introduction and Motivation
	Examples for Data and Queries
	Existing Approaches
	Graphs, Graph Transformations and Ontologies
	A Road Map for the Development of Hierarchical Graphs

	MPLL -- Multi Paradigm Location Language
	New Data Structures in MPLL
	Contexts in MPLL

	Uncertainty
	Fuzzy Sets
	One-Dimensional Fuzzy Distributions
	Integration of Landmarks

	Two-Dimensional Fuzzification
	Representation of Fuzzy Distributions

	Current State of Research on Locational Reasoning in WG A1
	Transport Network Ontology (OTN)
	The Origins of OTN
	Schedules
	Services
	Meteorology

	Summary

